找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVII; Workshop and Summer Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2019 Spr

[復(fù)制鏈接]
樓主: sprawl
21#
發(fā)表于 2025-3-25 04:50:14 | 只看該作者
22#
發(fā)表于 2025-3-25 09:47:03 | 只看該作者
Deformation Quantization of Commutative Families and Vector FieldsWe describe a series of cohomological obstructions for the deformation of involutive families of functions on a Poisson manifold and for the deformation of Poisson vector fields acting on it.
23#
發(fā)表于 2025-3-25 15:26:29 | 只看該作者
On the quantum flag manifold SUq(3)/T2The structure of the C *-algebra of functions on the quantum flag manifold SUq(3)/T2 is investigated. Building on the representation theory of C ( SUq(3) ) , we analyze irreducible representations and the primitive ideal space of C ( SUq(3)/T2) , with a view towards unearthing the “quantum sphere bundle” CP1 q → SUq(3)/T2 → CP2 q .
24#
發(fā)表于 2025-3-25 19:11:14 | 只看該作者
25#
發(fā)表于 2025-3-25 23:07:49 | 只看該作者
Hopf–Rinow theorem in Grassmann manifolds of ,-algebrasWe survey several results on the problem of finding a geodesic of minimal length joining two given endpoints in Grassmann manifolds of .- algebras.
26#
發(fā)表于 2025-3-26 02:52:30 | 只看該作者
27#
發(fā)表于 2025-3-26 06:48:18 | 只看該作者
Cultural Keywords in Philippine English. The internal symmetry of the problem makes it possible to reduce the dimension of the problem using the symplectic-quotient theory. The phase-space is constructed from the orbits of (co)adjoint representation of the general linear group. The presented parametrisation of the quotientspace is based
28#
發(fā)表于 2025-3-26 10:10:09 | 只看該作者
29#
發(fā)表于 2025-3-26 13:32:55 | 只看該作者
Elisabeth Remy,Brigitte Mossé,Denis Thieffrytors are constructed and used to compute the integrals of motion. The same investigation is performed with the introduction of the Laplace{ Runge{Lenz vector. The existence of quasi-bi-Hamiltonian structures is also elucidated. Related properties are studied.
30#
發(fā)表于 2025-3-26 20:33:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
翁牛特旗| 理塘县| 兰西县| 德阳市| 临海市| 米脂县| 横峰县| 贡嘎县| 巴楚县| 丽水市| 常熟市| 沙坪坝区| 尖扎县| 大庆市| 牙克石市| 伊宁县| 大宁县| 桦川县| 斗六市| 青川县| 姜堰市| 栾城县| 芦山县| 连江县| 法库县| 犍为县| 离岛区| 巫山县| 焉耆| 睢宁县| 永靖县| 镇安县| 龙井市| 札达县| 裕民县| 栾城县| 深水埗区| 通化县| 新巴尔虎左旗| 阿瓦提县| 古交市|