找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVII; Workshop and Summer Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2019 Spr

[復(fù)制鏈接]
樓主: sprawl
21#
發(fā)表于 2025-3-25 04:50:14 | 只看該作者
22#
發(fā)表于 2025-3-25 09:47:03 | 只看該作者
Deformation Quantization of Commutative Families and Vector FieldsWe describe a series of cohomological obstructions for the deformation of involutive families of functions on a Poisson manifold and for the deformation of Poisson vector fields acting on it.
23#
發(fā)表于 2025-3-25 15:26:29 | 只看該作者
On the quantum flag manifold SUq(3)/T2The structure of the C *-algebra of functions on the quantum flag manifold SUq(3)/T2 is investigated. Building on the representation theory of C ( SUq(3) ) , we analyze irreducible representations and the primitive ideal space of C ( SUq(3)/T2) , with a view towards unearthing the “quantum sphere bundle” CP1 q → SUq(3)/T2 → CP2 q .
24#
發(fā)表于 2025-3-25 19:11:14 | 只看該作者
25#
發(fā)表于 2025-3-25 23:07:49 | 只看該作者
Hopf–Rinow theorem in Grassmann manifolds of ,-algebrasWe survey several results on the problem of finding a geodesic of minimal length joining two given endpoints in Grassmann manifolds of .- algebras.
26#
發(fā)表于 2025-3-26 02:52:30 | 只看該作者
27#
發(fā)表于 2025-3-26 06:48:18 | 只看該作者
Cultural Keywords in Philippine English. The internal symmetry of the problem makes it possible to reduce the dimension of the problem using the symplectic-quotient theory. The phase-space is constructed from the orbits of (co)adjoint representation of the general linear group. The presented parametrisation of the quotientspace is based
28#
發(fā)表于 2025-3-26 10:10:09 | 只看該作者
29#
發(fā)表于 2025-3-26 13:32:55 | 只看該作者
Elisabeth Remy,Brigitte Mossé,Denis Thieffrytors are constructed and used to compute the integrals of motion. The same investigation is performed with the introduction of the Laplace{ Runge{Lenz vector. The existence of quasi-bi-Hamiltonian structures is also elucidated. Related properties are studied.
30#
發(fā)表于 2025-3-26 20:33:12 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 01:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凤城市| 信丰县| 从化市| 扶风县| 封丘县| 东阿县| 正定县| 剑河县| 东阳市| 康马县| 浦东新区| 汉阴县| 青田县| 武隆县| 海原县| 宁强县| 宝山区| 始兴县| 汶川县| 南郑县| 循化| 金平| 福建省| 嘉义市| 南皮县| 松江区| 广灵县| 庆安县| 锦州市| 崇礼县| 象山县| 济阳县| 东乡县| 嵊泗县| 天津市| 广西| 乌恰县| 大名县| 玉屏| 凯里市| 正阳县|