找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Methods in Physics XXXVII; Workshop and Summer Piotr Kielanowski,Anatol Odzijewicz,Emma Previato Conference proceedings 2019 Spr

[復制鏈接]
樓主: sprawl
31#
發(fā)表于 2025-3-27 00:12:43 | 只看該作者
32#
發(fā)表于 2025-3-27 04:05:35 | 只看該作者
33#
發(fā)表于 2025-3-27 05:52:13 | 只看該作者
Giovanni Bianchi,Werner Schiehlencal dual to Toeplitz operators which have symbols in an algebra. The mapping from a symbol to its co-Toeplitz operator gives a quantization scheme, called co-Toeplitz quantization. A new, quite simple particular case of co-Toeplitz quantization is introduced in this note. Examples are given in order
34#
發(fā)表于 2025-3-27 11:15:25 | 只看該作者
35#
發(fā)表于 2025-3-27 15:20:15 | 只看該作者
36#
發(fā)表于 2025-3-27 17:52:24 | 只看該作者
Hamiltonian Dynamics for the Kepler Problem in a Deformed Phase Spacetors are constructed and used to compute the integrals of motion. The same investigation is performed with the introduction of the Laplace{ Runge{Lenz vector. The existence of quasi-bi-Hamiltonian structures is also elucidated. Related properties are studied.
37#
發(fā)表于 2025-3-28 01:05:46 | 只看該作者
Notes on integrable motion of two interacting curves and two-layer generalized Heisenberg ferromagnery of curves is established. Using this relation we found the geometrical equivalent counterpart of the two-layer spin system which is the two-component KdV equation. Finally, the gauge equivalence between these equations is established.
38#
發(fā)表于 2025-3-28 04:53:34 | 只看該作者
39#
發(fā)表于 2025-3-28 07:16:27 | 只看該作者
40#
發(fā)表于 2025-3-28 11:25:01 | 只看該作者
Co-Toeplitz Quantization: A Simple Casecal dual to Toeplitz operators which have symbols in an algebra. The mapping from a symbol to its co-Toeplitz operator gives a quantization scheme, called co-Toeplitz quantization. A new, quite simple particular case of co-Toeplitz quantization is introduced in this note. Examples are given in order
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
鸡泽县| 靖安县| 沈丘县| 镇雄县| 刚察县| 华宁县| 乌拉特前旗| 普格县| 阿瓦提县| 全州县| 抚顺县| 郴州市| 通河县| 华蓥市| 博兴县| 阿城市| 焉耆| 淮北市| 临江市| 江西省| 双柏县| 五常市| 县级市| 大同县| 会理县| 收藏| 溧阳市| 沽源县| 开化县| 民县| 青铜峡市| 乌审旗| 德保县| 天全县| 青岛市| 雷山县| 龙游县| 平顶山市| 长寿区| 玛多县| 屯留县|