找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions; Xinyuan Wu,Bin Wang Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: FARCE
11#
發(fā)表于 2025-3-23 12:55:36 | 只看該作者
12#
發(fā)表于 2025-3-23 15:38:55 | 只看該作者
13#
發(fā)表于 2025-3-23 19:12:10 | 只看該作者
Continuous-Stage ERKN Integrators for Second-Order ODEs with Highly Oscillatory Solutions,s, sufficient conditions for energy preservation are shown for CSERKN methods. The symmetry and stability of CSERKN integrators are also analysed in detail. Preliminary numerical results highlight the effectiveness of CSERKN methods.
14#
發(fā)表于 2025-3-24 02:00:29 | 只看該作者
15#
發(fā)表于 2025-3-24 03:37:16 | 只看該作者
Exponential Collocation Methods for Conservative or Dissipative Systems,ent systems. As a consequence of this discussion, arbitrary-order trigonometric/RKN collocation methods are also presented and analysed for second-order highly oscillatory/general systems. The chapter is accompanied by numerical results that demonstrate the potential value of this research.
16#
發(fā)表于 2025-3-24 08:10:26 | 只看該作者
17#
發(fā)表于 2025-3-24 14:05:49 | 只看該作者
18#
發(fā)表于 2025-3-24 16:53:26 | 只看該作者
19#
發(fā)表于 2025-3-24 21:47:49 | 只看該作者
Volume-Preserving Exponential Integrators,onential integrators are demonstrated. For solving highly oscillatory second-order systems, efficient volume-preserving exponential integrators are derived, and for separable partitioned systems, volume-preserving ERKN integrators are presented. Moreover, volume-preserving RKN methods are also investigated.
20#
發(fā)表于 2025-3-25 00:11:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
平邑县| 盐池县| 福泉市| 宁阳县| 鸡泽县| 迁安市| 柞水县| 武山县| 拜泉县| 闽清县| 新化县| 汨罗市| 石台县| 来安县| 锡林浩特市| 綦江县| 玉林市| 揭阳市| 故城县| 昌黎县| 海南省| 张家界市| 阳泉市| 岳阳县| 宣武区| 天津市| 山阳县| 托克逊县| 开阳县| 新建县| 安徽省| 孝义市| 龙川县| 石河子市| 东海县| 林甸县| 江北区| 海伦市| 霸州市| 汉阴县| 唐海县|