找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions; Xinyuan Wu,Bin Wang Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: FARCE
41#
發(fā)表于 2025-3-28 16:34:50 | 只看該作者
42#
發(fā)表于 2025-3-28 22:40:35 | 只看該作者
Drug Repurposing Opportunities in Cancer,al solution should be preserved within the framework of Geometric Integration. This chapter considers the volume-preserving exponential integrators for different vector fields. We first analyse a necessary and sufficient condition of volume preservation for exponential integrators. We then discuss v
43#
發(fā)表于 2025-3-28 23:51:48 | 只看該作者
Elisa Barbarotto,George A. Calinsystems is called extended discrete gradient method. In this chapter, on the basis of the extended discrete gradient method, we present an efficient approach to devising a structure-preserving scheme for numerically solving conservative (dissipative) nonlinear wave equations. This scheme can preserv
44#
發(fā)表于 2025-3-29 04:01:11 | 只看該作者
45#
發(fā)表于 2025-3-29 09:12:16 | 只看該作者
Molecular Evolution and Phylogeny of , yse the nonlinear stability and convergence when a fully discrete symplectic scheme is designed for nonlinear Hamiltonian PDEs. This chapter presents a symplectic approximation for efficiently solving semilinear Klein–Gordon equations, which can be formulated as an abstract Hamiltonian ordinary diff
46#
發(fā)表于 2025-3-29 13:18:43 | 只看該作者
47#
發(fā)表于 2025-3-29 19:36:30 | 只看該作者
48#
發(fā)表于 2025-3-29 21:28:58 | 只看該作者
49#
發(fā)表于 2025-3-30 01:29:08 | 只看該作者
50#
發(fā)表于 2025-3-30 05:45:01 | 只看該作者
Exponential Collocation Methods for Conservative or Dissipative Systems,arbitrarily high order and preserve exactly or approximately first integrals or Lyapunov functions. In particular, the application of ECMs to stiff gradient systems is discussed in detail, and it turns out that ECMs are unconditionally energy-diminishing and strongly damped even for very stiff gradi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
黄浦区| 湘乡市| 宝兴县| 蓝山县| 苍南县| 朝阳县| 广东省| 鹰潭市| 德兴市| 兰坪| 婺源县| 酉阳| 云龙县| 绩溪县| 故城县| 邵东县| 连平县| 永安市| 彰化市| 富源县| 义马市| 乌兰浩特市| 桐庐县| 尼木县| 建瓯市| 昌平区| 汝南县| 天祝| 虞城县| 合作市| 黄山市| 柳江县| 府谷县| 集安市| 兰考县| 微博| 哈巴河县| 邵武市| 平乡县| 中牟县| 叙永县|