找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions; Xinyuan Wu,Bin Wang Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: FARCE
41#
發(fā)表于 2025-3-28 16:34:50 | 只看該作者
42#
發(fā)表于 2025-3-28 22:40:35 | 只看該作者
Drug Repurposing Opportunities in Cancer,al solution should be preserved within the framework of Geometric Integration. This chapter considers the volume-preserving exponential integrators for different vector fields. We first analyse a necessary and sufficient condition of volume preservation for exponential integrators. We then discuss v
43#
發(fā)表于 2025-3-28 23:51:48 | 只看該作者
Elisa Barbarotto,George A. Calinsystems is called extended discrete gradient method. In this chapter, on the basis of the extended discrete gradient method, we present an efficient approach to devising a structure-preserving scheme for numerically solving conservative (dissipative) nonlinear wave equations. This scheme can preserv
44#
發(fā)表于 2025-3-29 04:01:11 | 只看該作者
45#
發(fā)表于 2025-3-29 09:12:16 | 只看該作者
Molecular Evolution and Phylogeny of , yse the nonlinear stability and convergence when a fully discrete symplectic scheme is designed for nonlinear Hamiltonian PDEs. This chapter presents a symplectic approximation for efficiently solving semilinear Klein–Gordon equations, which can be formulated as an abstract Hamiltonian ordinary diff
46#
發(fā)表于 2025-3-29 13:18:43 | 只看該作者
47#
發(fā)表于 2025-3-29 19:36:30 | 只看該作者
48#
發(fā)表于 2025-3-29 21:28:58 | 只看該作者
49#
發(fā)表于 2025-3-30 01:29:08 | 只看該作者
50#
發(fā)表于 2025-3-30 05:45:01 | 只看該作者
Exponential Collocation Methods for Conservative or Dissipative Systems,arbitrarily high order and preserve exactly or approximately first integrals or Lyapunov functions. In particular, the application of ECMs to stiff gradient systems is discussed in detail, and it turns out that ECMs are unconditionally energy-diminishing and strongly damped even for very stiff gradi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 05:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新巴尔虎右旗| 渭源县| 平潭县| 邯郸县| 印江| 曲沃县| 馆陶县| 始兴县| 永康市| 陵水| 萍乡市| 桦南县| 嘉兴市| 冕宁县| 玉溪市| 霍林郭勒市| 乐至县| 石景山区| 利川市| 托里县| 永定县| 新和县| 浮山县| 莎车县| 木里| 关岭| 宾川县| 阿瓦提县| 喀喇沁旗| 沂源县| 宜昌市| 蒙山县| 定结县| 任丘市| 苍南县| 太保市| 彭阳县| 隆德县| 封丘县| 丰城市| 周宁县|