找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions; Xinyuan Wu,Bin Wang Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: FARCE
21#
發(fā)表于 2025-3-25 07:08:20 | 只看該作者
22#
發(fā)表于 2025-3-25 10:40:04 | 只看該作者
23#
發(fā)表于 2025-3-25 13:17:22 | 只看該作者
A. Karlin,D. A. Cowburn,M. J. ReiterThis chapter presents a class of energy-preserving integrators for Poisson systems based on the functionally-fitted strategy, and these energy-preserving integrators can have arbitrarily high order. This approach permits us to obtain the energy-preserving methods proposed by Cohen and Hairer and Brugnano et al. for Poisson systems.
24#
發(fā)表于 2025-3-25 17:21:05 | 只看該作者
25#
發(fā)表于 2025-3-25 20:54:31 | 只看該作者
26#
發(fā)表于 2025-3-26 02:54:22 | 只看該作者
Role of Decomposition on Drug Stability,Incorporating the operator-variation-of-constants formula for high-dimensional nonlinear wave equations with Fast Fourier Transform techniques in this chapter, we present a class of semi-analytical ERKN integrators, which can nearly preserve the spatial continuity as well as the oscillations of the underlying nonlinear waves equations.
27#
發(fā)表于 2025-3-26 04:41:58 | 只看該作者
28#
發(fā)表于 2025-3-26 11:31:28 | 只看該作者
Functionally-Fitted Energy-Preserving Integrators for Poisson Systems,This chapter presents a class of energy-preserving integrators for Poisson systems based on the functionally-fitted strategy, and these energy-preserving integrators can have arbitrarily high order. This approach permits us to obtain the energy-preserving methods proposed by Cohen and Hairer and Brugnano et al. for Poisson systems.
29#
發(fā)表于 2025-3-26 16:08:22 | 只看該作者
Global Error Bounds of One-Stage Explicit ERKN Integrators for SemilinearWave Equations,In this chapter, we analyse global error bounds for one-stage explicit extended Runge–Kutta–Nystr?m integrators for semilinear wave equations with periodic boundary conditions. We show optimal second-order convergence without requiring Lipschitz continuity and higher regularity of the exact solution.
30#
發(fā)表于 2025-3-26 19:10:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 08:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
灯塔市| 宜州市| 芦溪县| 双鸭山市| 井陉县| 射洪县| 托克逊县| 定兴县| 河池市| 长治市| 福泉市| 广德县| 田阳县| 深州市| 常宁市| 嘉义县| 化州市| 祁门县| 西丰县| 井陉县| 武宁县| 五常市| 乌鲁木齐县| 桃江县| 英山县| 黑河市| 彰化市| 九江市| 志丹县| 柳林县| 阳西县| 寻甸| 武山县| 平乐县| 安新县| 娱乐| 庆元县| 仁怀市| 晴隆县| 赣榆县| 宜川县|