找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Integrators for Differential Equations with Highly Oscillatory Solutions; Xinyuan Wu,Bin Wang Book 2021 The Editor(s) (if applic

[復(fù)制鏈接]
樓主: FARCE
41#
發(fā)表于 2025-3-28 16:34:50 | 只看該作者
42#
發(fā)表于 2025-3-28 22:40:35 | 只看該作者
Drug Repurposing Opportunities in Cancer,al solution should be preserved within the framework of Geometric Integration. This chapter considers the volume-preserving exponential integrators for different vector fields. We first analyse a necessary and sufficient condition of volume preservation for exponential integrators. We then discuss v
43#
發(fā)表于 2025-3-28 23:51:48 | 只看該作者
Elisa Barbarotto,George A. Calinsystems is called extended discrete gradient method. In this chapter, on the basis of the extended discrete gradient method, we present an efficient approach to devising a structure-preserving scheme for numerically solving conservative (dissipative) nonlinear wave equations. This scheme can preserv
44#
發(fā)表于 2025-3-29 04:01:11 | 只看該作者
45#
發(fā)表于 2025-3-29 09:12:16 | 只看該作者
Molecular Evolution and Phylogeny of , yse the nonlinear stability and convergence when a fully discrete symplectic scheme is designed for nonlinear Hamiltonian PDEs. This chapter presents a symplectic approximation for efficiently solving semilinear Klein–Gordon equations, which can be formulated as an abstract Hamiltonian ordinary diff
46#
發(fā)表于 2025-3-29 13:18:43 | 只看該作者
47#
發(fā)表于 2025-3-29 19:36:30 | 只看該作者
48#
發(fā)表于 2025-3-29 21:28:58 | 只看該作者
49#
發(fā)表于 2025-3-30 01:29:08 | 只看該作者
50#
發(fā)表于 2025-3-30 05:45:01 | 只看該作者
Exponential Collocation Methods for Conservative or Dissipative Systems,arbitrarily high order and preserve exactly or approximately first integrals or Lyapunov functions. In particular, the application of ECMs to stiff gradient systems is discussed in detail, and it turns out that ECMs are unconditionally energy-diminishing and strongly damped even for very stiff gradi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临湘市| 扎囊县| 左云县| 柳林县| 五莲县| 宝应县| 长治市| 浠水县| 松溪县| 蓝田县| 集安市| 广南县| 五原县| 巴东县| 扶风县| 方山县| 亚东县| 永和县| 舞钢市| 兴义市| 永宁县| 江都市| 长春市| 珠海市| 奉节县| 东城区| 汉阴县| 建昌县| 文登市| 福鼎市| 孝昌县| 德令哈市| 扶余县| 乐陵市| 宁陵县| 奉新县| 会理县| 拉萨市| 廉江市| 凌云县| 东莞市|