找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Control Theory and Sub-Riemannian Geometry; Gianna Stefani,Ugo Boscain,Mario Sigalotti Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Nixon
51#
發(fā)表于 2025-3-30 11:10:26 | 只看該作者
52#
發(fā)表于 2025-3-30 13:08:33 | 只看該作者
53#
發(fā)表于 2025-3-30 20:33:08 | 只看該作者
On geometry of affine control systems with one input,ributions of maximal class in ?. with additional structures such as affine control systems with one input spanning these distributions, sub-(pseudo)Riemannian structures etc. In contrast to the case of an arbitrary rank 2 distribution without additional structures, in the considered cases each abnor
54#
發(fā)表于 2025-3-31 00:47:37 | 只看該作者
55#
發(fā)表于 2025-3-31 04:32:49 | 只看該作者
The Delauney-Dubins Problem,iven constant curvature that connect two given tangential directions. About a hundred years later, L. Dubins, apparently unaware of the former problem, asked for a curve of minimal length that joins two fixed directions in the space of curves whose curvature is less or equal than a given constant. D
56#
發(fā)表于 2025-3-31 07:23:22 | 只看該作者
57#
發(fā)表于 2025-3-31 10:36:51 | 只看該作者
On the Alexandrov Topology of sub-Lorentzian Manifolds,an analogue of the Riemannian distance function and the Alexandrov topology based on causal relations, are not equivalent in general and may possess a variety of relations. We also show that ‘opened causal relations’ are more well-behaved in sub-Lorentzian settings.
58#
發(fā)表于 2025-3-31 17:03:37 | 只看該作者
59#
發(fā)表于 2025-3-31 20:55:08 | 只看該作者
Geometric Control Theory and Sub-Riemannian Geometry
60#
發(fā)表于 2025-4-1 00:30:46 | 只看該作者
The Delauney-Dubins Problem,sion of the problem of Dubins..In this paper we will show that the . -dimensional problem of Dubins (called Delauney-Dubins, for historical reasons) is essentially three dimensional on any space form (simply connected space of constant curvature). We also show that the extremal equations are complet
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:02
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
静乐县| 兴隆县| 广元市| 璧山县| 湖南省| 华宁县| 渝北区| 屏边| 孟连| 昆山市| 西宁市| 柳江县| 兴海县| 逊克县| 平原县| 城口县| 喀什市| 平潭县| 三亚市| 威信县| 房山区| 和龙市| 浠水县| 清水县| 成安县| 虎林市| 四平市| 曲沃县| 原阳县| 武汉市| 防城港市| 巩留县| 长治市| 建平县| 咸宁市| 将乐县| 乌拉特前旗| 吉水县| 永修县| 舟山市| 西丰县|