找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Control Theory and Sub-Riemannian Geometry; Gianna Stefani,Ugo Boscain,Mario Sigalotti Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Nixon
11#
發(fā)表于 2025-3-24 01:41:09 | 只看該作者
12#
發(fā)表于 2025-3-24 04:44:28 | 只看該作者
13#
發(fā)表于 2025-3-24 09:35:24 | 只看該作者
https://doi.org/10.1007/978-3-8349-9494-3omposition for the solution of the equation, we can reduce the problem to the validity of a uniform observability inequality with respect to the Fourier frequency. Such an inequality is obtained by means of a suitable Carleman estimate, with an adapted spatial weight function. We thus show that null
14#
發(fā)表于 2025-3-24 12:26:20 | 只看該作者
Zusammenfassung und Implikationen, the other, with the restrictions that they cannot instantaneously slip or spin one with respect to the other. On the way we show how this problem has profited from the development of intrinsic Riemannian geometry, from geometric control theory and sub-Riemannian geometry. We also mention how other
15#
發(fā)表于 2025-3-24 16:13:28 | 只看該作者
16#
發(fā)表于 2025-3-24 20:34:00 | 只看該作者
Stellungnahme des Landesdenkmalpflegers,nifold with singular points. We first consider the case of a strongly equiregular submanifold, i. e., a smooth submanifold . for which the growth vector of the distribution . and the growth vector of the intersection of . with . are constant on .. In this case, we generalize the result in [.], which
17#
發(fā)表于 2025-3-25 00:43:48 | 只看該作者
18#
發(fā)表于 2025-3-25 03:52:33 | 只看該作者
19#
發(fā)表于 2025-3-25 08:49:53 | 只看該作者
20#
發(fā)表于 2025-3-25 14:00:47 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 19:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
稻城县| 镇康县| 彝良县| 盖州市| 泰宁县| 民权县| 治多县| 镇沅| 林州市| 金沙县| 广东省| 鹤山市| 鸡泽县| 龙南县| 甘泉县| 商都县| 东至县| 都江堰市| 金门县| 瓮安县| 金湖县| 尉氏县| 施秉县| 河西区| 商丘市| 余庆县| 麻阳| 迁西县| 东台市| 禹城市| 阳东县| 商丘市| 蒙山县| 和静县| 远安县| 平凉市| 稷山县| 黑山县| 凌海市| 格尔木市| 衡山县|