找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Control Theory and Sub-Riemannian Geometry; Gianna Stefani,Ugo Boscain,Mario Sigalotti Book 2014 Springer International Publishi

[復(fù)制鏈接]
樓主: Nixon
41#
發(fā)表于 2025-3-28 16:14:45 | 只看該作者
42#
發(fā)表于 2025-3-28 21:38:49 | 只看該作者
43#
發(fā)表于 2025-3-29 00:17:05 | 只看該作者
44#
發(fā)表于 2025-3-29 05:29:51 | 只看該作者
Optimal stationary exploitation of size-structured population with intra-specific competition,We analyze an exploitation of size-structured population in stationary mode and prove the existence of stationary state of population for a given stationary control. The existence of an optimal control is proved and the necessary optimal condition is found.
45#
發(fā)表于 2025-3-29 10:06:35 | 只看該作者
Remarks on Lipschitz domains in Carnot groups,In this Note we present the basic features of the theory of Lipschitz maps within Carnot groups as it is developed in [.], and we prove that intrinsic Lipschitz domains in Carnot groups are uniform domains.
46#
發(fā)表于 2025-3-29 15:29:29 | 只看該作者
47#
發(fā)表于 2025-3-29 19:11:48 | 只看該作者
48#
發(fā)表于 2025-3-29 19:56:21 | 只看該作者
,On Local Approximation Theorem on Equiregular Carnot-Carathéodory Spaces,We prove the Local Approximation Theorem on equiregular Carnot-Carathéodory spaces with ..-smooth basis vector fields.
49#
發(fā)表于 2025-3-30 02:45:23 | 只看該作者
50#
發(fā)表于 2025-3-30 08:07:21 | 只看該作者
On the injectivity and nonfocal domains of the ellipsoid of revolution,omains is investigated on the ellipsoid of revolution. Building upon previous results [., .], both the oblate and prolate cases are addressed. Preliminary numerical estimates are given in the prolate situation.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 17:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新化县| 泽普县| 崇阳县| 金华市| 外汇| 新平| 江津市| 盖州市| 孟村| 正宁县| 北京市| 聂荣县| 佛冈县| 新民市| 雅安市| 绍兴县| 万全县| 金昌市| 石首市| 高尔夫| 鲁山县| 枣阳市| 绵竹市| 海宁市| 中江县| 雅江县| 垣曲县| 原阳县| 雷山县| 临城县| 桐柏县| 黑水县| 合川市| 日喀则市| 永春县| 西昌市| 柯坪县| 宁城县| 北辰区| 海门市| 麻江县|