找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Configurations of Singularities of Planar Polynomial Differential Systems; A Global Classificat Joan C. Artés,Jaume Llibre,Nicola

[復(fù)制鏈接]
樓主: Withdrawal
11#
發(fā)表于 2025-3-23 11:26:44 | 只看該作者
12#
發(fā)表于 2025-3-23 16:13:39 | 只看該作者
13#
發(fā)表于 2025-3-23 20:12:56 | 只看該作者
The OIMDA Model: Blindness Case StudyThe goals of this chapter are firstly to sum up and highlight the core contributions of this book and secondly to cast a view towards the future indicating ways opened up by these contributions.
14#
發(fā)表于 2025-3-23 23:58:00 | 只看該作者
15#
發(fā)表于 2025-3-24 04:17:54 | 只看該作者
Survey of results on quadratic differential systemsQuadratic differential systems occur often in many areas of applied mathematics, in population dynamics [145], nonlinear mechanics [236, 237, 69], chemistry, electrical circuits, neural networks, laser physics, hydrodynamics [347, 328, 183, 191], astrophysics [80] and others [280, 154, 102].
16#
發(fā)表于 2025-3-24 08:25:11 | 只看該作者
Singularities of polynomial differential systemsSince we are going to talk about finite and infinite singularities, we must first describe the compactified space in which we are going to work.
17#
發(fā)表于 2025-3-24 10:57:53 | 只看該作者
18#
發(fā)表于 2025-3-24 16:01:44 | 只看該作者
Invariant theory of planar polynomial vector fieldsThe roots of the invariant theory of polynomial vector fields lie in the classical invariant theory. The idea to adapt to polynomial vector fields the concepts of classical invariant theory is due to C. S. Sibirschi, the founder of the Chi?in?u school of qualitative theory of differential equations.
19#
發(fā)表于 2025-3-24 19:29:20 | 只看該作者
Classifications of quadratic systems with special singularitiesOne of the goals of this book is to enumerate all possible geometrical configurations of singularities, finite and infinite, of real quadratic differential systems. The foliations with singularities of the complexified systems can be compactified over the complex projective space.
20#
發(fā)表于 2025-3-24 23:21:38 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鲜城| 马鞍山市| 安庆市| 临高县| 安阳县| 通海县| 高邑县| 定安县| 福泉市| 广西| 榆社县| 阿巴嘎旗| 津南区| 老河口市| 青海省| 陆丰市| 苍梧县| 济南市| 秦安县| 布尔津县| 吉木乃县| 五家渠市| 仙居县| 子长县| 武宁县| 本溪| 顺义区| 海阳市| 开远市| 香河县| 广宁县| 延长县| 紫阳县| 平利县| 寿阳县| 通化市| 杭州市| 和林格尔县| 南江县| 西平县| 新泰市|