找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Configurations of Singularities of Planar Polynomial Differential Systems; A Global Classificat Joan C. Artés,Jaume Llibre,Nicola

[復(fù)制鏈接]
樓主: Withdrawal
21#
發(fā)表于 2025-3-25 04:06:44 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:28 | 只看該作者
Quadratic systems with definite singularities of total multiplicity threeAccording to Proposition 5.1, for a quadratic system to have finite singularities of total multiplicity three (i.e. .. = 3), the conditions .. = 0 and .. ≠ 0 must be satisfied. Then by Theorem 6.4 the following lemma is valid.
23#
發(fā)表于 2025-3-25 14:43:18 | 只看該作者
Quadratic systems with finite singularities of total multiplicity fourConsider real the quadratic systems (8.1). According to Proposition 5.1 for a quadratic system (8.1) to have finite singularities of total multiplicity four (i.e. .. = 4), the condition .. ≠ 0 must be satisfied. Therefore according to Theorem 6.4 the following lemma is valid.
24#
發(fā)表于 2025-3-25 19:05:19 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:27 | 只看該作者
26#
發(fā)表于 2025-3-26 01:20:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:45 | 只看該作者
28#
發(fā)表于 2025-3-26 09:38:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:50:44 | 只看該作者
Part 1: Introduction and General Principles, the publication of this book (see [41, 29, 338, 301, 26, 32]). Roughly speaking these results give us global information about the possibilities for the number and multiplicity of finite singularities (see [41, 29]), the canonical forms for these possibilities, the weak singularities that may occur
30#
發(fā)表于 2025-3-26 17:31:43 | 只看該作者
Book 2021cient and less time-consuming..Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 15:01
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
凭祥市| 清苑县| 资源县| 潞西市| 化德县| 巧家县| 高清| 泽州县| 嘉善县| 开江县| 喀喇沁旗| 五原县| 读书| 玛多县| 涞源县| 肥西县| 泰州市| 伽师县| 仁化县| 灵璧县| 房产| 荔浦县| 精河县| 浮梁县| 惠安县| 镇宁| 友谊县| 合阳县| 南靖县| 临颍县| 岳普湖县| 吴江市| 开远市| 大竹县| 石棉县| 永川市| 喀什市| 张家川| 鹤岗市| 宜春市| 大港区|