找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Configurations of Singularities of Planar Polynomial Differential Systems; A Global Classificat Joan C. Artés,Jaume Llibre,Nicola

[復(fù)制鏈接]
樓主: Withdrawal
21#
發(fā)表于 2025-3-25 04:06:44 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:28 | 只看該作者
Quadratic systems with definite singularities of total multiplicity threeAccording to Proposition 5.1, for a quadratic system to have finite singularities of total multiplicity three (i.e. .. = 3), the conditions .. = 0 and .. ≠ 0 must be satisfied. Then by Theorem 6.4 the following lemma is valid.
23#
發(fā)表于 2025-3-25 14:43:18 | 只看該作者
Quadratic systems with finite singularities of total multiplicity fourConsider real the quadratic systems (8.1). According to Proposition 5.1 for a quadratic system (8.1) to have finite singularities of total multiplicity four (i.e. .. = 4), the condition .. ≠ 0 must be satisfied. Therefore according to Theorem 6.4 the following lemma is valid.
24#
發(fā)表于 2025-3-25 19:05:19 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:27 | 只看該作者
26#
發(fā)表于 2025-3-26 01:20:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:45 | 只看該作者
28#
發(fā)表于 2025-3-26 09:38:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:50:44 | 只看該作者
Part 1: Introduction and General Principles, the publication of this book (see [41, 29, 338, 301, 26, 32]). Roughly speaking these results give us global information about the possibilities for the number and multiplicity of finite singularities (see [41, 29]), the canonical forms for these possibilities, the weak singularities that may occur
30#
發(fā)表于 2025-3-26 17:31:43 | 只看該作者
Book 2021cient and less time-consuming..Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
开原市| 普洱| 于都县| 西华县| 安龙县| 金乡县| 棋牌| 阳信县| 车致| 柏乡县| 洛阳市| 巴中市| 海南省| 新营市| 安图县| 长兴县| 杭州市| 莱阳市| 衡阳县| 桑植县| 武强县| 皮山县| 澎湖县| 博爱县| 汤原县| 山阳县| 海丰县| 宁阳县| 荔波县| 资溪县| 吉木乃县| 泸溪县| 迁西县| 革吉县| 富阳市| 长丰县| 兰州市| 西乡县| 察哈| 台州市| 应城市|