找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geometric Configurations of Singularities of Planar Polynomial Differential Systems; A Global Classificat Joan C. Artés,Jaume Llibre,Nicola

[復(fù)制鏈接]
樓主: Withdrawal
21#
發(fā)表于 2025-3-25 04:06:44 | 只看該作者
22#
發(fā)表于 2025-3-25 07:33:28 | 只看該作者
Quadratic systems with definite singularities of total multiplicity threeAccording to Proposition 5.1, for a quadratic system to have finite singularities of total multiplicity three (i.e. .. = 3), the conditions .. = 0 and .. ≠ 0 must be satisfied. Then by Theorem 6.4 the following lemma is valid.
23#
發(fā)表于 2025-3-25 14:43:18 | 只看該作者
Quadratic systems with finite singularities of total multiplicity fourConsider real the quadratic systems (8.1). According to Proposition 5.1 for a quadratic system (8.1) to have finite singularities of total multiplicity four (i.e. .. = 4), the condition .. ≠ 0 must be satisfied. Therefore according to Theorem 6.4 the following lemma is valid.
24#
發(fā)表于 2025-3-25 19:05:19 | 只看該作者
25#
發(fā)表于 2025-3-25 23:44:27 | 只看該作者
26#
發(fā)表于 2025-3-26 01:20:01 | 只看該作者
27#
發(fā)表于 2025-3-26 07:54:45 | 只看該作者
28#
發(fā)表于 2025-3-26 09:38:56 | 只看該作者
29#
發(fā)表于 2025-3-26 15:50:44 | 只看該作者
Part 1: Introduction and General Principles, the publication of this book (see [41, 29, 338, 301, 26, 32]). Roughly speaking these results give us global information about the possibilities for the number and multiplicity of finite singularities (see [41, 29]), the canonical forms for these possibilities, the weak singularities that may occur
30#
發(fā)表于 2025-3-26 17:31:43 | 只看該作者
Book 2021cient and less time-consuming..Given its scope, the book will appeal to specialists on polynomial differential systems, pure and applied mathematicians who need to study bifurcation diagrams of families of such systems, Ph.D. students, and postdoctoral fellows..
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 18:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巴彦淖尔市| 田阳县| 旬阳县| 仪征市| 错那县| 赤峰市| 盐津县| 延安市| 曲麻莱县| 凤城市| 岱山县| 怀化市| 屏东县| 夏河县| 竹山县| 宁强县| 九龙坡区| 瓮安县| 达孜县| 梁山县| 光山县| 山东| 广东省| 墨竹工卡县| 手游| 大新县| 金堂县| 托克托县| 沐川县| 介休市| 尚志市| 子洲县| 十堰市| 彭泽县| 赤城县| 景泰县| 尉犁县| 商洛市| 徐水县| 同心县| 安阳县|