找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic and Horocyclic Trajectories; Fran?oise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan

[復(fù)制鏈接]
查看: 34870|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:26:31 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Geodesic and Horocyclic Trajectories
編輯Fran?oise Dal’Bo
視頻videohttp://file.papertrans.cn/384/383099/383099.mp4
概述Provides a useful introduction to the topological dynamics of geodesic and horocycle flows associated with surfaces of curvature -1.The text is ‘punctuated’ with exercises, avoiding overwhelming proof
叢書名稱Universitext
圖書封面Titlebook: Geodesic and Horocyclic Trajectories;  Fran?oise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan
描述Geodesic and Horocyclic Trajectories presents an introduction to the topological dynamics of two classical flows associated with surfaces of curvature ?1, namely the geodesic and horocycle flows. Written primarily with the idea of highlighting, in a relatively elementary framework, the existence of gateways between some mathematical fields, and the advantages of using them, historical aspects of this field are not addressed and most of the references are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations.
出版日期Textbook 2011
關(guān)鍵詞Fuchsian group; Poincaré half plane; Schottky group; Topological dynamics; continued fraction; diophantin
版次1
doihttps://doi.org/10.1007/978-0-85729-073-1
isbn_softcover978-0-85729-072-4
isbn_ebook978-0-85729-073-1Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag London Limited 2011
The information of publication is updating

書目名稱Geodesic and Horocyclic Trajectories影響因子(影響力)




書目名稱Geodesic and Horocyclic Trajectories影響因子(影響力)學(xué)科排名




書目名稱Geodesic and Horocyclic Trajectories網(wǎng)絡(luò)公開度




書目名稱Geodesic and Horocyclic Trajectories網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Geodesic and Horocyclic Trajectories被引頻次




書目名稱Geodesic and Horocyclic Trajectories被引頻次學(xué)科排名




書目名稱Geodesic and Horocyclic Trajectories年度引用




書目名稱Geodesic and Horocyclic Trajectories年度引用學(xué)科排名




書目名稱Geodesic and Horocyclic Trajectories讀者反饋




書目名稱Geodesic and Horocyclic Trajectories讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:25:37 | 只看該作者
Die Kontroverse um Neuronale Netzeof the modular group. We will use this coding in Chap.?IV to study the dynamics of the geodesic flow, and in Chap.?VII to translate the behavior of geodesic rays on the modular surface into the terms of Diophantine approximations.
板凳
發(fā)表于 2025-3-22 02:57:02 | 只看該作者
地板
發(fā)表于 2025-3-22 06:48:07 | 只看該作者
Dynamics of Fuchsian groups,iemannian geometry, see Appendix?B..Sections?3 and?4 do not include many examples. Readers who prefer to see examples of Fuchsian groups before studying their properties are invited to browse through Chap.?II.
5#
發(fā)表于 2025-3-22 11:04:21 | 只看該作者
Examples of Fuchsian groups,of the modular group. We will use this coding in Chap.?IV to study the dynamics of the geodesic flow, and in Chap.?VII to translate the behavior of geodesic rays on the modular surface into the terms of Diophantine approximations.
6#
發(fā)表于 2025-3-22 14:32:09 | 只看該作者
7#
發(fā)表于 2025-3-22 17:25:11 | 只看該作者
8#
發(fā)表于 2025-3-23 00:17:10 | 只看該作者
The Lorentzian point of view,ly the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, they are left to the reader. Appendix B can be useful in this chapter.
9#
發(fā)表于 2025-3-23 02:05:52 | 只看該作者
10#
發(fā)表于 2025-3-23 07:31:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
全椒县| 崇礼县| 昌平区| 怀远县| 清徐县| 唐河县| 固阳县| 思茅市| 铜陵市| 哈尔滨市| 万载县| 连平县| 腾冲县| 汉中市| 晋中市| 塘沽区| 柏乡县| 迁西县| 五指山市| 台山市| 牡丹江市| 涪陵区| 上饶县| 德昌县| 新泰市| 台北县| 门源| 洪雅县| 图们市| 澎湖县| 襄樊市| 共和县| 寿光市| 定日县| 句容市| 都昌县| 衡南县| 安岳县| 武威市| 黔西县| 揭西县|