找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic and Horocyclic Trajectories; Fran?oise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan

[復(fù)制鏈接]
樓主: 貶損
11#
發(fā)表于 2025-3-23 09:53:23 | 只看該作者
12#
發(fā)表于 2025-3-23 14:37:26 | 只看該作者
Topological dynamics of the horocycle flow,he quotient of ..? by the Fuchsian group corresponding to .. In the geometrically finite case, we show that the horocycle flow is less topologically turbulent than the geodesic flow (Sect.?4)..Throughout this chapter, we use the definitions and notations associated with the dynamics of a flow as originally introduced in Appendix?A.
13#
發(fā)表于 2025-3-23 18:41:57 | 只看該作者
Textbook 2011nces are reserved until the end of each chapter in the Comments section. Topics within the text cover geometry, and examples, of Fuchsian groups; topological dynamics of the geodesic flow; Schottky groups; the Lorentzian point of view and Trajectories and Diophantine approximations.
14#
發(fā)表于 2025-3-24 01:47:29 | 只看該作者
https://doi.org/10.1007/978-3-662-28982-2es of ..(...) in terms of sequences. As applications, we will construct, in the general case of a non-elementary Fuchsian group .′, trajectories of the geodesic flow on . which are neither periodic nor dense.
15#
發(fā)表于 2025-3-24 03:20:17 | 只看該作者
16#
發(fā)表于 2025-3-24 06:38:59 | 只看該作者
17#
發(fā)表于 2025-3-24 13:47:31 | 只看該作者
18#
發(fā)表于 2025-3-24 17:06:37 | 只看該作者
19#
發(fā)表于 2025-3-24 20:21:55 | 只看該作者
Topological dynamics of the horocycle flow,ur method is based on a correspondence between the set of horocycles of ? and the space of non-zero vectors in ?. modulo {±Id}. This vectorial point of view allows one to relate the topological dynamics of the linear action on ?. of a discrete subgroup . of SL(2,?) to that of the horocycle flow on t
20#
發(fā)表于 2025-3-25 00:45:43 | 只看該作者
The Lorentzian point of view, group associated with?. on {±Id}?.?{0}..Our motivation in this chapter, is to construct a linear representation of?. taking into account simultaneously the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, the
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
东方市| 万年县| 玉龙| 锡林浩特市| 封开县| 芦溪县| 天全县| 会昌县| 虞城县| 福清市| 崇明县| 伊川县| 神农架林区| 揭东县| 郁南县| 奉贤区| 元氏县| 辽阳市| 清苑县| 筠连县| 南充市| 六盘水市| 瑞丽市| 尼玛县| 临清市| 克山县| 庆城县| 洛阳市| 黄平县| 全椒县| 全州县| 玉树县| 石家庄市| 云浮市| 综艺| 四会市| 双柏县| 迁西县| 五家渠市| 洛川县| 榕江县|