找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic and Horocyclic Trajectories; Fran?oise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan

[復制鏈接]
樓主: 貶損
21#
發(fā)表于 2025-3-25 04:01:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:25:43 | 只看該作者
,Ziele ?ffentlicher Unternehmen,don’s “The geometry of discrete groups” Springer, New York ., A.?Katok’s and V.?Climenhaga’s “Lectures on Surfaces” American Mathematical Society, Providence ., and S.?Katok’s “Fuchsian groups” University of Chicago Press, Chicago .. The reader will find in these books the solutions of the exercises
23#
發(fā)表于 2025-3-25 14:52:17 | 只看該作者
Die Kontroverse um Neuronale Netzewill consider consists of geometrically finite free groups, called . groups. Its construction is based on the dynamics of isometries..The second family comes from number theory. It consists of three non-uniform lattices: the . group PSL(2,?), its congruence modulo 2 subgroup and its commutator subgr
24#
發(fā)表于 2025-3-25 19:12:42 | 只看該作者
25#
發(fā)表于 2025-3-25 23:33:53 | 只看該作者
https://doi.org/10.1007/978-3-662-31626-9ur method is based on a correspondence between the set of horocycles of ? and the space of non-zero vectors in ?. modulo {±Id}. This vectorial point of view allows one to relate the topological dynamics of the linear action on ?. of a discrete subgroup . of SL(2,?) to that of the horocycle flow on t
26#
發(fā)表于 2025-3-26 00:24:28 | 只看該作者
https://doi.org/10.1007/978-3-322-88007-9 group associated with?. on {±Id}?.?{0}..Our motivation in this chapter, is to construct a linear representation of?. taking into account simultaneously the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, the
27#
發(fā)表于 2025-3-26 07:59:10 | 只看該作者
Elemente betrieblicher Finanzentscheidungen,ions) which .. With these hypotheses, the surface .=.? admits finitely many cusps (see Sects.?I.3 and?I.4) (Fig.?VII.1)..As in the previous chapters, we let . denote the projection from ? to?.. In the first step, we study the excursions of a geodesic ray .([.,.)) into the cusp corresponding to the i
28#
發(fā)表于 2025-3-26 12:26:02 | 只看該作者
29#
發(fā)表于 2025-3-26 16:22:40 | 只看該作者
30#
發(fā)表于 2025-3-26 19:40:36 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
江西省| 华宁县| 万源市| 四平市| 康保县| 行唐县| 互助| 林甸县| 内丘县| 临夏县| 临沧市| 泉州市| 嘉义县| 马尔康县| 罗城| 丰宁| 金沙县| 镇赉县| 尼木县| 怀安县| 福鼎市| 乌审旗| 高要市| 天台县| 织金县| 淳化县| 辉南县| 隆子县| 江达县| 来宾市| 台北市| 景德镇市| 延寿县| 江油市| 房产| 广水市| 江永县| 习水县| 漾濞| 门头沟区| 封丘县|