找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic and Horocyclic Trajectories; Fran?oise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan

[復制鏈接]
樓主: 貶損
21#
發(fā)表于 2025-3-25 04:01:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:25:43 | 只看該作者
,Ziele ?ffentlicher Unternehmen,don’s “The geometry of discrete groups” Springer, New York ., A.?Katok’s and V.?Climenhaga’s “Lectures on Surfaces” American Mathematical Society, Providence ., and S.?Katok’s “Fuchsian groups” University of Chicago Press, Chicago .. The reader will find in these books the solutions of the exercises
23#
發(fā)表于 2025-3-25 14:52:17 | 只看該作者
Die Kontroverse um Neuronale Netzewill consider consists of geometrically finite free groups, called . groups. Its construction is based on the dynamics of isometries..The second family comes from number theory. It consists of three non-uniform lattices: the . group PSL(2,?), its congruence modulo 2 subgroup and its commutator subgr
24#
發(fā)表于 2025-3-25 19:12:42 | 只看該作者
25#
發(fā)表于 2025-3-25 23:33:53 | 只看該作者
https://doi.org/10.1007/978-3-662-31626-9ur method is based on a correspondence between the set of horocycles of ? and the space of non-zero vectors in ?. modulo {±Id}. This vectorial point of view allows one to relate the topological dynamics of the linear action on ?. of a discrete subgroup . of SL(2,?) to that of the horocycle flow on t
26#
發(fā)表于 2025-3-26 00:24:28 | 只看該作者
https://doi.org/10.1007/978-3-322-88007-9 group associated with?. on {±Id}?.?{0}..Our motivation in this chapter, is to construct a linear representation of?. taking into account simultaneously the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, the
27#
發(fā)表于 2025-3-26 07:59:10 | 只看該作者
Elemente betrieblicher Finanzentscheidungen,ions) which .. With these hypotheses, the surface .=.? admits finitely many cusps (see Sects.?I.3 and?I.4) (Fig.?VII.1)..As in the previous chapters, we let . denote the projection from ? to?.. In the first step, we study the excursions of a geodesic ray .([.,.)) into the cusp corresponding to the i
28#
發(fā)表于 2025-3-26 12:26:02 | 只看該作者
29#
發(fā)表于 2025-3-26 16:22:40 | 只看該作者
30#
發(fā)表于 2025-3-26 19:40:36 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 13:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
晋州市| 兴海县| 特克斯县| 梓潼县| 内江市| 莫力| 泾阳县| 崇阳县| 天镇县| 无锡市| 威信县| 乐业县| 府谷县| 来宾市| 通辽市| 巴彦淖尔市| 高要市| 新田县| 修文县| 临高县| 南江县| 佛山市| 上栗县| 武强县| 高尔夫| 湟源县| 三亚市| 普兰店市| 滦平县| 织金县| 修武县| 阿拉善右旗| 唐海县| 绥德县| 丰原市| 汕尾市| 奇台县| 井冈山市| 绿春县| 化隆| 金乡县|