找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic and Horocyclic Trajectories; Fran?oise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan

[復(fù)制鏈接]
樓主: 貶損
21#
發(fā)表于 2025-3-25 04:01:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:25:43 | 只看該作者
,Ziele ?ffentlicher Unternehmen,don’s “The geometry of discrete groups” Springer, New York ., A.?Katok’s and V.?Climenhaga’s “Lectures on Surfaces” American Mathematical Society, Providence ., and S.?Katok’s “Fuchsian groups” University of Chicago Press, Chicago .. The reader will find in these books the solutions of the exercises
23#
發(fā)表于 2025-3-25 14:52:17 | 只看該作者
Die Kontroverse um Neuronale Netzewill consider consists of geometrically finite free groups, called . groups. Its construction is based on the dynamics of isometries..The second family comes from number theory. It consists of three non-uniform lattices: the . group PSL(2,?), its congruence modulo 2 subgroup and its commutator subgr
24#
發(fā)表于 2025-3-25 19:12:42 | 只看該作者
25#
發(fā)表于 2025-3-25 23:33:53 | 只看該作者
https://doi.org/10.1007/978-3-662-31626-9ur method is based on a correspondence between the set of horocycles of ? and the space of non-zero vectors in ?. modulo {±Id}. This vectorial point of view allows one to relate the topological dynamics of the linear action on ?. of a discrete subgroup . of SL(2,?) to that of the horocycle flow on t
26#
發(fā)表于 2025-3-26 00:24:28 | 只看該作者
https://doi.org/10.1007/978-3-322-88007-9 group associated with?. on {±Id}?.?{0}..Our motivation in this chapter, is to construct a linear representation of?. taking into account simultaneously the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, the
27#
發(fā)表于 2025-3-26 07:59:10 | 只看該作者
Elemente betrieblicher Finanzentscheidungen,ions) which .. With these hypotheses, the surface .=.? admits finitely many cusps (see Sects.?I.3 and?I.4) (Fig.?VII.1)..As in the previous chapters, we let . denote the projection from ? to?.. In the first step, we study the excursions of a geodesic ray .([.,.)) into the cusp corresponding to the i
28#
發(fā)表于 2025-3-26 12:26:02 | 只看該作者
29#
發(fā)表于 2025-3-26 16:22:40 | 只看該作者
30#
發(fā)表于 2025-3-26 19:40:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
武穴市| 白沙| 安义县| 吴江市| 托克逊县| 卓资县| 常宁市| 阜新市| 黄石市| 德钦县| 札达县| 深水埗区| 湖北省| 天全县| 呼伦贝尔市| 伊川县| 湛江市| 永州市| 金寨县| 高碑店市| 太仆寺旗| 萍乡市| 锡林郭勒盟| 莒南县| 蓬莱市| 嵊泗县| 泊头市| 竹北市| 安西县| 潢川县| 宁武县| 镇远县| 贵港市| 运城市| 宣武区| 广东省| 米泉市| 阜宁县| 金川县| 安康市| 镇赉县|