找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic and Horocyclic Trajectories; Fran?oise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan

[復(fù)制鏈接]
樓主: 貶損
21#
發(fā)表于 2025-3-25 04:01:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:25:43 | 只看該作者
,Ziele ?ffentlicher Unternehmen,don’s “The geometry of discrete groups” Springer, New York ., A.?Katok’s and V.?Climenhaga’s “Lectures on Surfaces” American Mathematical Society, Providence ., and S.?Katok’s “Fuchsian groups” University of Chicago Press, Chicago .. The reader will find in these books the solutions of the exercises
23#
發(fā)表于 2025-3-25 14:52:17 | 只看該作者
Die Kontroverse um Neuronale Netzewill consider consists of geometrically finite free groups, called . groups. Its construction is based on the dynamics of isometries..The second family comes from number theory. It consists of three non-uniform lattices: the . group PSL(2,?), its congruence modulo 2 subgroup and its commutator subgr
24#
發(fā)表于 2025-3-25 19:12:42 | 只看該作者
25#
發(fā)表于 2025-3-25 23:33:53 | 只看該作者
https://doi.org/10.1007/978-3-662-31626-9ur method is based on a correspondence between the set of horocycles of ? and the space of non-zero vectors in ?. modulo {±Id}. This vectorial point of view allows one to relate the topological dynamics of the linear action on ?. of a discrete subgroup . of SL(2,?) to that of the horocycle flow on t
26#
發(fā)表于 2025-3-26 00:24:28 | 只看該作者
https://doi.org/10.1007/978-3-322-88007-9 group associated with?. on {±Id}?.?{0}..Our motivation in this chapter, is to construct a linear representation of?. taking into account simultaneously the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, the
27#
發(fā)表于 2025-3-26 07:59:10 | 只看該作者
Elemente betrieblicher Finanzentscheidungen,ions) which .. With these hypotheses, the surface .=.? admits finitely many cusps (see Sects.?I.3 and?I.4) (Fig.?VII.1)..As in the previous chapters, we let . denote the projection from ? to?.. In the first step, we study the excursions of a geodesic ray .([.,.)) into the cusp corresponding to the i
28#
發(fā)表于 2025-3-26 12:26:02 | 只看該作者
29#
發(fā)表于 2025-3-26 16:22:40 | 只看該作者
30#
發(fā)表于 2025-3-26 19:40:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
且末县| 普格县| 镇江市| 财经| 夹江县| 新兴县| 拉萨市| 常州市| 婺源县| 左云县| 皋兰县| 阳春市| 嘉善县| 两当县| 象州县| 农安县| 永昌县| 南城县| 房产| 蓬莱市| 山西省| 修文县| 宝应县| 泸水县| 陵川县| 贵州省| 兴隆县| 太仓市| 商南县| 永昌县| 临高县| 建阳市| 兴和县| 德惠市| 东莞市| 承德市| 沈阳市| 甘孜| 南皮县| 林甸县| 土默特右旗|