找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Geodesic and Horocyclic Trajectories; Fran?oise Dal’Bo Textbook 2011 Springer-Verlag London Limited 2011 Fuchsian group.Poincaré half plan

[復(fù)制鏈接]
樓主: 貶損
21#
發(fā)表于 2025-3-25 04:01:57 | 只看該作者
22#
發(fā)表于 2025-3-25 11:25:43 | 只看該作者
,Ziele ?ffentlicher Unternehmen,don’s “The geometry of discrete groups” Springer, New York ., A.?Katok’s and V.?Climenhaga’s “Lectures on Surfaces” American Mathematical Society, Providence ., and S.?Katok’s “Fuchsian groups” University of Chicago Press, Chicago .. The reader will find in these books the solutions of the exercises
23#
發(fā)表于 2025-3-25 14:52:17 | 只看該作者
Die Kontroverse um Neuronale Netzewill consider consists of geometrically finite free groups, called . groups. Its construction is based on the dynamics of isometries..The second family comes from number theory. It consists of three non-uniform lattices: the . group PSL(2,?), its congruence modulo 2 subgroup and its commutator subgr
24#
發(fā)表于 2025-3-25 19:12:42 | 只看該作者
25#
發(fā)表于 2025-3-25 23:33:53 | 只看該作者
https://doi.org/10.1007/978-3-662-31626-9ur method is based on a correspondence between the set of horocycles of ? and the space of non-zero vectors in ?. modulo {±Id}. This vectorial point of view allows one to relate the topological dynamics of the linear action on ?. of a discrete subgroup . of SL(2,?) to that of the horocycle flow on t
26#
發(fā)表于 2025-3-26 00:24:28 | 只看該作者
https://doi.org/10.1007/978-3-322-88007-9 group associated with?. on {±Id}?.?{0}..Our motivation in this chapter, is to construct a linear representation of?. taking into account simultaneously the dynamics of the horocycle and of the geodesic flows. Many proofs are reformulations of proofs given in the previous chapters. In this case, the
27#
發(fā)表于 2025-3-26 07:59:10 | 只看該作者
Elemente betrieblicher Finanzentscheidungen,ions) which .. With these hypotheses, the surface .=.? admits finitely many cusps (see Sects.?I.3 and?I.4) (Fig.?VII.1)..As in the previous chapters, we let . denote the projection from ? to?.. In the first step, we study the excursions of a geodesic ray .([.,.)) into the cusp corresponding to the i
28#
發(fā)表于 2025-3-26 12:26:02 | 只看該作者
29#
發(fā)表于 2025-3-26 16:22:40 | 只看該作者
30#
發(fā)表于 2025-3-26 19:40:36 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 11:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
图木舒克市| 乃东县| 怀来县| 靖宇县| 马龙县| 商河县| 亳州市| 平顶山市| 南昌县| 万载县| 百色市| 依安县| 宁河县| 周口市| 涞源县| 攀枝花市| 南漳县| 阳曲县| 无棣县| 连云港市| 永胜县| 沧源| 临汾市| 昌吉市| 芷江| 嘉峪关市| 中牟县| 岗巴县| 永德县| 涿鹿县| 瓮安县| 铜陵市| 章丘市| 嘉黎县| 库车县| 准格尔旗| 新宁县| 肇庆市| 新龙县| 什邡市| 岑溪市|