找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Lie Theory in Mathematics, Physics and Beyond; Sergei Silvestrov,Eugen Paal,Alexander Stolin Book 2009 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: Diverticulum
21#
發(fā)表于 2025-3-25 04:16:46 | 只看該作者
A Rewriting Approach to Graph Invariantsn popping up in the last couple of decades. Concretely, it generalises the underlying structure of expressions to being general graphs, where traditional algebraic notation only supports path- or treelike expressions. This paper demonstrates how to apply the author‘s Generic Diamond Lemma in diagram
22#
發(fā)表于 2025-3-25 10:13:23 | 只看該作者
23#
發(fā)表于 2025-3-25 12:53:23 | 只看該作者
24#
發(fā)表于 2025-3-25 16:53:40 | 只看該作者
25#
發(fā)表于 2025-3-25 20:00:35 | 只看該作者
Computing Noncommutative Global Deformations Of D-Modulessider noncommutative deformations of quasi-coherent sheaves of left .-modules on ., and show how to compute their pro-representing hulls. As an application, we compute the noncommutative deformations of the left ..-module .. when . is any elliptic curve.
26#
發(fā)表于 2025-3-26 02:53:23 | 只看該作者
Applications of Hypocontinuous Bilinear Maps in Infinite-Dimensional Differential Calculusus. We describe situations where, nonetheless, compositions of β with Keller -maps (on suitable domains) are. Our main applications concern holomorphic families of operators, and the foundations of locally convex Poisson vector spaces.
27#
發(fā)表于 2025-3-26 07:04:32 | 只看該作者
Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebrasf Hom-coalgebra, Hom-coassociative coalgebra and G-Hom-coalgebra for any subgroup . of permutation group ... Also we extend the concept of Lie-admissible coalgebra by Goze and Remm to Hom-coalgebras and show that .-Hom-coalgebras are Hom-Lie admissible Hom-coalgebras, and also establish duality corr
28#
發(fā)表于 2025-3-26 12:08:49 | 只看該作者
29#
發(fā)表于 2025-3-26 14:47:12 | 只看該作者
Deformations of the Witt, Virasoro, and Current Algebraymore if the Lie algebra to be deformed is infinite dimensional. Such Lie algebras might be formally rigid but nevertheless allow deformations which are even locally non-trivial. In joint work with Alice Fialowski the author constructed such geometric families for the formally rigid Witt algebra and
30#
發(fā)表于 2025-3-26 17:29:43 | 只看該作者
978-3-642-09904-5Springer-Verlag Berlin Heidelberg 2009
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 12:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
交口县| 湘阴县| 宜君县| 家居| 梓潼县| 敖汉旗| 瓮安县| 琼海市| 屏山县| 安国市| 莎车县| 南投市| 万盛区| 霸州市| 靖边县| 吴川市| 辽宁省| 民丰县| 黎平县| 诸城市| 湖南省| 定安县| 教育| 克山县| 独山县| 黄龙县| 贵溪市| 台山市| 宝应县| 金塔县| 丹阳市| 樟树市| 嘉义市| 扬中市| 大丰市| 昌邑市| 永定县| 古蔺县| 正安县| 黔西县| 漾濞|