找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Lie Theory in Mathematics, Physics and Beyond; Sergei Silvestrov,Eugen Paal,Alexander Stolin Book 2009 Springer-Verlag Berlin

[復(fù)制鏈接]
查看: 50130|回復(fù): 58
樓主
發(fā)表于 2025-3-21 17:21:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond
編輯Sergei Silvestrov,Eugen Paal,Alexander Stolin
視頻videohttp://file.papertrans.cn/383/382220/382220.mp4
概述Cutting edge content in Lie theory.Includes supplementary material:
圖書封面Titlebook: Generalized Lie Theory in Mathematics, Physics and Beyond;  Sergei Silvestrov,Eugen Paal,Alexander Stolin Book 2009 Springer-Verlag Berlin
描述.The goal of this book is to extend the understanding of the fundamental role of generalizations of Lie theory and related non-commutative and non-associative structures in mathematics and physics..This volume is devoted to the interplay between several rapidly expanding research fields in contemporary mathematics and physics concerned with generalizations of the main structures of Lie theory aimed at quantization and discrete and non-commutative extensions of differential calculus and geometry, non-associative structures, actions of groups and semi-groups, non-commutative dynamics, non-commutative geometry and applications in physics and beyond..The book will be a useful source of inspiration for a broad spectrum of researchers and for research students, and includes contributions from several large research communities in modern mathematics and physics..This volume consists of 5 parts comprising 25 chapters, which were contributed by 32 researchers from 12 different countries. All contributions in the volume have been refereed..
出版日期Book 2009
關(guān)鍵詞Algebra; Integrable systems algebras groups; Non-associative algebras; Quasi Lie algebras; linear algebr
版次1
doihttps://doi.org/10.1007/978-3-540-85332-9
isbn_softcover978-3-642-09904-5
isbn_ebook978-3-540-85332-9
copyrightSpringer-Verlag Berlin Heidelberg 2009
The information of publication is updating

書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond影響因子(影響力)




書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond影響因子(影響力)學(xué)科排名




書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond網(wǎng)絡(luò)公開度




書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond被引頻次




書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond被引頻次學(xué)科排名




書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond年度引用




書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond年度引用學(xué)科排名




書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond讀者反饋




書目名稱Generalized Lie Theory in Mathematics, Physics and Beyond讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:21:52 | 只看該作者
https://doi.org/10.1007/978-94-017-7125-2resulting solutions of a matrix KP hierarchy determine, under a ‘rank one condition’, solutions of the scalar KP hierarchy. We extend these results to the discrete KP hierarchy. Moreover, we build a bridge from the WNA framework to the Gelfand—Dickey—Sato formulation of the KP hierarchy.
板凳
發(fā)表于 2025-3-22 00:31:53 | 只看該作者
https://doi.org/10.1007/978-94-017-1147-0g combinatorial problem is to construct finite orthoalgebras not admitting bivaluations. In this paper we discuss the construction of a family such examples closely related to the irreducible root systems of exceptional type.
地板
發(fā)表于 2025-3-22 07:54:51 | 只看該作者
Interchangeability in Dynamic Environments,espondence between classes of .-Hom-coalgebras and .-Hom-algebras. In another hand, we provide relevant definitions and basic properties of Hom-Hopf algebras generalizing the classical Hopf algebras and define the module and comodule structure over Hom-associative algebra or Hom-coassociative coalgebra.
5#
發(fā)表于 2025-3-22 09:51:36 | 只看該作者
https://doi.org/10.1007/978-1-4615-5515-5 current Lie algebras. These families are genus one (i.e. elliptic) Lie algebras of Krichever—type. In this contribution the results are reviewed. The families of algebras are given in explicit form. The constructions are induced by the geometric process of degenerating the elliptic curves to singular cubics.
6#
發(fā)表于 2025-3-22 14:48:21 | 只看該作者
Weakly Nonassociative Algebras, Riccati and KP Hierarchiesresulting solutions of a matrix KP hierarchy determine, under a ‘rank one condition’, solutions of the scalar KP hierarchy. We extend these results to the discrete KP hierarchy. Moreover, we build a bridge from the WNA framework to the Gelfand—Dickey—Sato formulation of the KP hierarchy.
7#
發(fā)表于 2025-3-22 20:00:54 | 只看該作者
Automorphisms of Finite Orthoalgebras, Exceptional Root Systems and Quantum Mechanicsg combinatorial problem is to construct finite orthoalgebras not admitting bivaluations. In this paper we discuss the construction of a family such examples closely related to the irreducible root systems of exceptional type.
8#
發(fā)表于 2025-3-23 00:36:02 | 只看該作者
Hom-Lie Admissible Hom-Coalgebras and Hom-Hopf Algebrasespondence between classes of .-Hom-coalgebras and .-Hom-algebras. In another hand, we provide relevant definitions and basic properties of Hom-Hopf algebras generalizing the classical Hopf algebras and define the module and comodule structure over Hom-associative algebra or Hom-coassociative coalgebra.
9#
發(fā)表于 2025-3-23 03:55:01 | 只看該作者
Deformations of the Witt, Virasoro, and Current Algebra current Lie algebras. These families are genus one (i.e. elliptic) Lie algebras of Krichever—type. In this contribution the results are reviewed. The families of algebras are given in explicit form. The constructions are induced by the geometric process of degenerating the elliptic curves to singular cubics.
10#
發(fā)表于 2025-3-23 07:10:03 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 07:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
万载县| 柞水县| 平山县| 专栏| 逊克县| 阳春市| 志丹县| 霍林郭勒市| 青田县| 荆门市| 洱源县| 毕节市| 赤水市| 祁东县| 抚州市| 家居| 西林县| 福安市| 罗城| 峨眉山市| 嘉善县| 乌海市| 大关县| 连城县| 阿合奇县| 徐闻县| 长岭县| 砚山县| 富蕴县| 宝丰县| 平凉市| 通榆县| 安化县| 洛南县| 赤城县| 扬州市| 枞阳县| 寿宁县| 扎赉特旗| 利辛县| 定南县|