找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Lie Theory in Mathematics, Physics and Beyond; Sergei Silvestrov,Eugen Paal,Alexander Stolin Book 2009 Springer-Verlag Berlin

[復(fù)制鏈接]
樓主: Diverticulum
11#
發(fā)表于 2025-3-23 13:20:02 | 只看該作者
Toward a Theory of Constitutive Justice,nection and the curvature matrix. We calculate the expression for the curvature matrix in terms of the entries of the matrix of .-connection. We also find the form of the Bianchi identity in terms of the curvature matrix and the matrix of a .-connection.
12#
發(fā)表于 2025-3-23 15:08:05 | 只看該作者
13#
發(fā)表于 2025-3-23 20:08:28 | 只看該作者
14#
發(fā)表于 2025-3-23 22:24:15 | 只看該作者
15#
發(fā)表于 2025-3-24 06:04:55 | 只看該作者
16#
發(fā)表于 2025-3-24 07:16:35 | 只看該作者
ommunities in modern mathematics and physics..This volume consists of 5 parts comprising 25 chapters, which were contributed by 32 researchers from 12 different countries. All contributions in the volume have been refereed..978-3-642-09904-5978-3-540-85332-9
17#
發(fā)表于 2025-3-24 12:37:47 | 只看該作者
18#
發(fā)表于 2025-3-24 17:20:00 | 只看該作者
19#
發(fā)表于 2025-3-24 22:03:56 | 只看該作者
Weakly Nonassociative Algebras, Riccati and KP Hierarchiesary differential equations, solutions of the KP hierarchy with dependent variable in an associative subalgebra (the middle nucleus). We recall central results and consider a class of WNA algebras for which the hierarchy of ODEs reduces to a matrix Ric-cati hierarchy, which can be easily solved. The
20#
發(fā)表于 2025-3-25 00:32:49 | 只看該作者
Automorphisms of Finite Orthoalgebras, Exceptional Root Systems and Quantum MechanicsGiven a physical system (quantum or classical), the collection of all its binary observables (properties) may be viewed as an orthoalgebra. In the quantum case, in contrast to the classical, the orthoalgebra cannot have a “bivaluation” (a morphism ending in a two-element orthoalgebra). An interestin
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 14:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新建县| 桂阳县| 吉木萨尔县| 安远县| 如东县| 新安县| 获嘉县| 周口市| 马关县| 江津市| 连州市| 罗定市| 上杭县| 玉田县| 阿瓦提县| 墨竹工卡县| 都匀市| 天等县| 博客| 甘洛县| 东明县| 曲阳县| 盐源县| 景谷| 牟定县| 沛县| 田东县| 台安县| 开化县| 武鸣县| 两当县| 昔阳县| 松阳县| 东明县| 屏南县| 通河县| 五家渠市| 呼伦贝尔市| 治县。| 灵宝市| 怀集县|