找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Game Theory; A Multi-Leveled Appr Hans Peters Textbook 20081st edition Springer-Verlag Berlin Heidelberg 2008 Applications of Game Theory.N

[復制鏈接]
樓主: 乳缽
41#
發(fā)表于 2025-3-28 15:25:40 | 只看該作者
42#
發(fā)表于 2025-3-28 21:10:17 | 只看該作者
43#
發(fā)表于 2025-3-29 02:43:58 | 只看該作者
Die Statistik in der Vergangenheit]..In this chapter we consider two-person . repeated games and formulate Folk theorems both for subgame perfect and for Nash equilibrium. The approach is somewhat informal, and mainly based on examples. In Sect. 7.1 we consider subgame perfect equilibrium and in Sect. 7.2 we consider Nash equilibrium.
44#
發(fā)表于 2025-3-29 04:30:38 | 只看該作者
Physikalische krankmachende Faktoren (Folge)ation as in Problem 9.13..In this chapter a few other cooperative game theory models are discussed: bargaining problems in Sect. 10.1, exchange economies in Sect. 10.2, matching problems in Sect. 10.3, and house exchange in Sect. 10.4.
45#
發(fā)表于 2025-3-29 09:19:28 | 只看該作者
Finite Two-Person Gamespt of strict domination to facilitate computation of Nash equilibria and to compute equilibria also of larger games. The structure of this chapter thus parallels the structure of Chap. 2. For a deeper and more comprehensive analysis of finite two-person games see Chap. 13.
46#
發(fā)表于 2025-3-29 13:14:51 | 只看該作者
47#
發(fā)表于 2025-3-29 18:14:53 | 只看該作者
48#
發(fā)表于 2025-3-29 22:53:55 | 只看該作者
Finite Two-Person Zero-Sum Gamesd in Sect. 1.3.1 belong to this class..In Sect. 2.1 the basic definitions and theory are discussed. Section 2.2 shows how to solve 2 × . and . × 2 games, and larger games by elimination of strictly dominated strategies.
49#
發(fā)表于 2025-3-30 02:12:44 | 只看該作者
Matrix Games 12.1 presents a proof of the Minimax Theorem, and Sect. 12.2 shows how a matrix game can be solved – optimal strategies and the value of the game can be found – by solving an associated linear programming problem.
50#
發(fā)表于 2025-3-30 07:27:52 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-7 21:24
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
万安县| 离岛区| 长治市| 翁牛特旗| 余干县| 翁牛特旗| 三穗县| 大城县| 东丰县| 凤翔县| 双鸭山市| 潮安县| 建瓯市| 鄢陵县| 响水县| 博客| 五华县| 涟水县| 盐池县| 丽水市| 德令哈市| 台东县| 黔西县| 朔州市| 遂平县| 博野县| 天长市| 连州市| 科技| 西藏| 桦川县| 长阳| 宽甸| 贺兰县| 沁源县| 扎赉特旗| 长沙县| 金堂县| 喀什市| 前郭尔| 贡山|