找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Concavity in Fuzzy Optimization and Decision Analysis; Jaroslav Ramík,Milan Vlach Book 2002 Springer Science+Business Media Ne

[復制鏈接]
樓主: Optician
11#
發(fā)表于 2025-3-23 10:03:27 | 只看該作者
12#
發(fā)表于 2025-3-23 14:53:02 | 只看該作者
13#
發(fā)表于 2025-3-23 18:21:05 | 只看該作者
Kommunikation zwischen Mensch und Maschine,We assume that the reader is familiar with standard set theoretic concepts, introductory elements of linear algebra, and basic material from calculus. To avoid misunderstandings and for reader’s convenience, we review some basic concepts, results and notations.
14#
發(fā)表于 2025-3-24 00:37:19 | 只看該作者
15#
發(fā)表于 2025-3-24 05:42:22 | 只看該作者
https://doi.org/10.1007/978-3-662-49429-5Most frequent mathematical programming problems are linear programming problems. In this chapter we are concerned with fuzzy linear programming problem related to linear programming problems in the following form.
16#
發(fā)表于 2025-3-24 10:34:14 | 只看該作者
17#
發(fā)表于 2025-3-24 12:34:35 | 只看該作者
Generalized Concave FunctionsThe notion of concavity of real-valued functions of real variables and its various generalizations have found many applications in economics and engineering. We refer to [3] for a detailed treatment of concavity and some of its generalizations.
18#
發(fā)表于 2025-3-24 17:38:44 | 只看該作者
Fuzzy Linear ProgrammingMost frequent mathematical programming problems are linear programming problems. In this chapter we are concerned with fuzzy linear programming problem related to linear programming problems in the following form.
19#
發(fā)表于 2025-3-24 21:32:25 | 只看該作者
20#
發(fā)表于 2025-3-25 02:41:27 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
万载县| 哈巴河县| 如东县| 包头市| 乌拉特中旗| 栖霞市| 青河县| 高邮市| 阜南县| 昆山市| 奉新县| 松原市| 峨山| 丁青县| 临泉县| 左贡县| 濮阳市| 玉环县| 和硕县| 汕尾市| 绥芬河市| 宜兰县| 滨州市| 河东区| 太康县| 曲沃县| 古浪县| 建平县| 武宣县| 交城县| 孙吴县| 四会市| 微博| 呼玛县| 铜鼓县| 平和县| 西华县| 湖北省| 杭州市| 乌拉特中旗| 建水县|