找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Concavity in Fuzzy Optimization and Decision Analysis; Jaroslav Ramík,Milan Vlach Book 2002 Springer Science+Business Media Ne

[復(fù)制鏈接]
查看: 24924|回復(fù): 50
樓主
發(fā)表于 2025-3-21 16:37:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis
編輯Jaroslav Ramík,Milan Vlach
視頻videohttp://file.papertrans.cn/383/382181/382181.mp4
叢書(shū)名稱International Series in Operations Research & Management Science
圖書(shū)封面Titlebook: Generalized Concavity in Fuzzy Optimization and Decision Analysis;  Jaroslav Ramík,Milan Vlach Book 2002 Springer Science+Business Media Ne
描述Convexity of sets in linear spaces, and concavity and convexityof functions, lie at the root of beautiful theoretical results thatare at the same time extremely useful in the analysis and solution ofoptimization problems, including problems of either single objectiveor multiple objectives. Not all of these results rely necessarily onconvexity and concavity; some of the results can guarantee that eachlocal optimum is also a global optimum, giving these methods broaderapplication to a wider class of problems. Hence, the focus of thefirst part of the book is concerned with several types of generalizedconvex sets and generalized concave functions. In addition to theirapplicability to nonconvex optimization, these convex sets andgeneralized concave functions are used in the book‘s second part,where decision-making and optimization problems under uncertainty areinvestigated. .Uncertainty in the problem data often cannot be avoided when dealingwith practical problems. Errors occur in real-world data for a host ofreasons. However, over the last thirty years, the fuzzy set approachhas proved to be useful in these situations. It is this approach tooptimization under uncertainty that is exten
出版日期Book 2002
關(guān)鍵詞addition; calculus; optimization; scheduling; sets
版次1
doihttps://doi.org/10.1007/978-1-4615-1485-5
isbn_softcover978-1-4613-5577-9
isbn_ebook978-1-4615-1485-5Series ISSN 0884-8289 Series E-ISSN 2214-7934
issn_series 0884-8289
copyrightSpringer Science+Business Media New York 2002
The information of publication is updating

書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis影響因子(影響力)




書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis影響因子(影響力)學(xué)科排名




書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis被引頻次




書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis被引頻次學(xué)科排名




書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis年度引用




書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis年度引用學(xué)科排名




書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis讀者反饋




書(shū)目名稱Generalized Concavity in Fuzzy Optimization and Decision Analysis讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:22:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:47:23 | 只看該作者
https://doi.org/10.1007/978-3-0348-9313-8it interval [0,1]. The reason for this restriction comes from applications to real-world problems. There exist many practical situations, e.g., in decision making, economics and business, and also in technical or technological disciplines, where such functions play an essential role. These applications will be dealt with in Part II.
地板
發(fā)表于 2025-3-22 07:12:24 | 只看該作者
Triangular Norms and ,-Quasiconcave Functionsit interval [0,1]. The reason for this restriction comes from applications to real-world problems. There exist many practical situations, e.g., in decision making, economics and business, and also in technical or technological disciplines, where such functions play an essential role. These applications will be dealt with in Part II.
5#
發(fā)表于 2025-3-22 10:28:14 | 只看該作者
6#
發(fā)表于 2025-3-22 15:36:15 | 只看該作者
7#
發(fā)表于 2025-3-22 18:59:44 | 只看該作者
https://doi.org/10.1007/978-3-0348-5671-3ll the individual aggregated values. This chapter serves as a theoretical background for applications mainly in the area of decision analysis, decision making or decision support. In decision making, values to be aggregated are typically preference or satisfaction degrees. A preference degree, e.g.,
8#
發(fā)表于 2025-3-23 01:05:31 | 只看該作者
Kommunikation auf Anwendungsebeneracteristic functions, see, e.g., [11], [32] and [57]. While this may be advantageous in some contexts, we should notice that the notion of a characteristic function is more complex than the notion of a subset. Indeed, the characteristic function χ. of a subset . of . is defined by [EQ139-1] Since χ
9#
發(fā)表于 2025-3-23 02:31:21 | 只看該作者
Technikgestaltung aus Frauenperspektiveeasuring physical quantities, from errors caused by representing some data in a computer, from the fact that some data are approximate solutions of other problems or estimations by human experts, etc. In some of these situations, the fuzzy set approach may be applicable. In the context of multicrite
10#
發(fā)表于 2025-3-23 07:38:31 | 只看該作者
Zahlendarstellung und numerische Fehlerof objective functions on a given set of alternatives in such a way that more preferable alternatives have higher values. The values of the objective function describe effects from choices of the alternatives. In economic problems, for example, these values may reflect profits obtained when using va
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
安义县| 皮山县| 琼中| 石楼县| 册亨县| 增城市| 江津市| 永德县| 仲巴县| 辛集市| 稷山县| 青海省| 勐海县| 江永县| 南乐县| 靖宇县| 长汀县| 闻喜县| 收藏| 巨野县| 东阳市| 桐梓县| 南陵县| 尼木县| 穆棱市| 大渡口区| 镶黄旗| 利津县| 潼关县| 西贡区| 武强县| 衡阳市| 台北市| 大庆市| 利辛县| 遵义市| 兴安县| 泌阳县| 浦东新区| 葫芦岛市| 新泰市|