找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Generalized Concavity in Fuzzy Optimization and Decision Analysis; Jaroslav Ramík,Milan Vlach Book 2002 Springer Science+Business Media Ne

[復制鏈接]
樓主: Optician
31#
發(fā)表于 2025-3-26 21:18:20 | 只看該作者
Generalized Convex Setsnvex sets. Then we make further steps generalizing the starshaped sets to obtain path-connected sets, Φ-convex sets and some other types of generalized convex sets. The generalized convex sets will serve as a basis for defining generalized concave and convex functions, which will be introduced in th
32#
發(fā)表于 2025-3-27 04:03:02 | 只看該作者
Triangular Norms and ,-Quasiconcave Functionsit interval [0,1]. The reason for this restriction comes from applications to real-world problems. There exist many practical situations, e.g., in decision making, economics and business, and also in technical or technological disciplines, where such functions play an essential role. These applicati
33#
發(fā)表于 2025-3-27 08:55:14 | 只看該作者
34#
發(fā)表于 2025-3-27 10:32:08 | 只看該作者
35#
發(fā)表于 2025-3-27 14:22:13 | 只看該作者
36#
發(fā)表于 2025-3-27 21:38:11 | 只看該作者
Fuzzy Mathematical Programmingof objective functions on a given set of alternatives in such a way that more preferable alternatives have higher values. The values of the objective function describe effects from choices of the alternatives. In economic problems, for example, these values may reflect profits obtained when using va
37#
發(fā)表于 2025-3-28 01:23:08 | 只看該作者
38#
發(fā)表于 2025-3-28 04:17:12 | 只看該作者
39#
發(fā)表于 2025-3-28 07:43:05 | 只看該作者
40#
發(fā)表于 2025-3-28 10:38:14 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
芮城县| 宁强县| 囊谦县| 高雄县| 年辖:市辖区| 北碚区| 蒙自县| 科技| 南京市| 邳州市| 黑山县| 孝义市| 疏勒县| 尼木县| 湘阴县| 朝阳县| 思南县| 平潭县| 房山区| 万源市| 宁德市| 彝良县| 敦化市| 黄平县| 荥阳市| 淳化县| 宁河县| 徐汇区| 濮阳县| 韩城市| 乌鲁木齐县| 惠安县| 怀集县| 宕昌县| 上犹县| 丹江口市| 澎湖县| 定西市| 汉中市| 赤壁市| 建瓯市|