找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Galois Theory; A Constructive Appro Marc Nieper-Wi?kirchen Textbook 2024 The Editor(s) (if applicable) and The Author(s), under

[復制鏈接]
樓主: Exaltation
11#
發(fā)表于 2025-3-23 12:13:43 | 只看該作者
Methoden der Mathematischen Physik ., and we provide a complete procedure in this chapter..By being able to assign a group to each (the roots of each) polynomial, we can in turn draw conclusions about the polynomial and its roots from the group structure. Therefore, in this chapter, we look at some very general statements about grou
12#
發(fā)表于 2025-3-23 14:32:57 | 只看該作者
Theorie der linearen Integralgleichungen,bsolute case over the rational numbers: First, we look at the relative case over suitable extensions of the original coefficient domain. Then we successively reduce the number field, so that the Galois group successively increases until we find the Galois group over the rational numbers in the limit
13#
發(fā)表于 2025-3-23 18:26:57 | 只看該作者
2731-3824 ght at the beginning of mathematics studies and is equally suitable for first-year students at the Bachelor‘s level and for teachers...The central statements are already summarised and concisely presented978-3-662-66642-5978-3-662-66643-2Series ISSN 2731-3824 Series E-ISSN 2731-3832
14#
發(fā)表于 2025-3-24 01:55:06 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:56:56 | 只看該作者
17#
發(fā)表于 2025-3-24 10:55:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:25 | 只看該作者
On the Solvability of Polynomial Equations,bsolute case over the rational numbers: First, we look at the relative case over suitable extensions of the original coefficient domain. Then we successively reduce the number field, so that the Galois group successively increases until we find the Galois group over the rational numbers in the limit
19#
發(fā)表于 2025-3-24 22:37:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:08 | 只看該作者
978-3-662-66642-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-10 23:54
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
汝南县| 饶平县| 潮州市| 鄂尔多斯市| 遵化市| 霍城县| 息烽县| 祁阳县| 花莲市| 邵武市| 涿鹿县| 凭祥市| 德令哈市| 中山市| 丁青县| 永州市| 日土县| 交口县| 河南省| 基隆市| 淮阳县| 腾冲县| 张家口市| 延川县| 准格尔旗| 博爱县| 万盛区| 定西市| 永嘉县| 仁寿县| 云林县| 黔西| 博野县| 珲春市| 谷城县| 忻城县| 罗源县| 登封市| 平果县| 固始县| 翼城县|