找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Galois Theory; A Constructive Appro Marc Nieper-Wi?kirchen Textbook 2024 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Exaltation
21#
發(fā)表于 2025-3-25 03:39:26 | 只看該作者
22#
發(fā)表于 2025-3-25 07:49:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:51 | 只看該作者
24#
發(fā)表于 2025-3-25 18:23:57 | 只看該作者
Methoden der Journalismusforschungizations of integers..In this context, we call a polynomial . if it does not allow such a factorization. In other words, the irreducible polynomials play the role of prime numbers in the ring of polynomials. Every linear polynomial . must be irreducible, because already for reasons of degree it cann
25#
發(fā)表于 2025-3-25 23:07:21 | 只看該作者
26#
發(fā)表于 2025-3-26 02:06:03 | 只看該作者
Theorie der linearen Integralgleichungen,ns out that the theory becomes much more powerful when we also consider extensions of the rational numbers as the coefficient domain. We call this view the ., while we refer to the rational number case as the ...For example, . is the minimal polynomial of a fourth root . of 2 over the rational numbe
27#
發(fā)表于 2025-3-26 05:26:03 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:31 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:40 | 只看該作者
https://doi.org/10.1007/978-3-662-66643-2Galois theory; Resolvability of polynomial equations; Constructability of regular n-corners; Impossibil
30#
發(fā)表于 2025-3-26 18:51:58 | 只看該作者
Marc Nieper-Wi?kirchenSuitable for first-year students in Bachelor‘s and teacher training programmes.Consistently constructive approach facilitates understanding.Core statements and essential arguments are summarised
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇宁| 延边| 柳州市| 尚志市| 贵溪市| 永济市| 察隅县| 枝江市| 屏东市| 定南县| 涞源县| 进贤县| 安塞县| 云阳县| 台北市| 方正县| 巴林右旗| 江油市| 正宁县| 南开区| 永丰县| 施甸县| 滦南县| 呼伦贝尔市| 闽清县| 道孚县| 师宗县| 绥宁县| 会同县| 邵东县| 保靖县| 万盛区| 毕节市| 梓潼县| 福清市| 静乐县| 时尚| 洛浦县| 渭南市| 绿春县| 衡山县|