找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Galois Theory; A Constructive Appro Marc Nieper-Wi?kirchen Textbook 2024 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Exaltation
11#
發(fā)表于 2025-3-23 12:13:43 | 只看該作者
Methoden der Mathematischen Physik ., and we provide a complete procedure in this chapter..By being able to assign a group to each (the roots of each) polynomial, we can in turn draw conclusions about the polynomial and its roots from the group structure. Therefore, in this chapter, we look at some very general statements about grou
12#
發(fā)表于 2025-3-23 14:32:57 | 只看該作者
Theorie der linearen Integralgleichungen,bsolute case over the rational numbers: First, we look at the relative case over suitable extensions of the original coefficient domain. Then we successively reduce the number field, so that the Galois group successively increases until we find the Galois group over the rational numbers in the limit
13#
發(fā)表于 2025-3-23 18:26:57 | 只看該作者
2731-3824 ght at the beginning of mathematics studies and is equally suitable for first-year students at the Bachelor‘s level and for teachers...The central statements are already summarised and concisely presented978-3-662-66642-5978-3-662-66643-2Series ISSN 2731-3824 Series E-ISSN 2731-3832
14#
發(fā)表于 2025-3-24 01:55:06 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:56:56 | 只看該作者
17#
發(fā)表于 2025-3-24 10:55:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:25 | 只看該作者
On the Solvability of Polynomial Equations,bsolute case over the rational numbers: First, we look at the relative case over suitable extensions of the original coefficient domain. Then we successively reduce the number field, so that the Galois group successively increases until we find the Galois group over the rational numbers in the limit
19#
發(fā)表于 2025-3-24 22:37:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:08 | 只看該作者
978-3-662-66642-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
招远市| 咸丰县| 铜梁县| 隆林| 喜德县| 怀安县| 怀柔区| 灵丘县| 曲沃县| 鹿泉市| 徐汇区| 晋中市| 宁武县| 南华县| 若尔盖县| 泾阳县| 庆阳市| 余庆县| 德州市| 辉南县| 旬邑县| 玛沁县| 安化县| 昭平县| 长治市| 甘洛县| 中阳县| 湘潭县| 西丰县| 富民县| 泰兴市| 米林县| 富锦市| 瓮安县| 酒泉市| 志丹县| 潜山县| 板桥市| 阿拉善左旗| 象州县| 大邑县|