找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Galois Theory; A Constructive Appro Marc Nieper-Wi?kirchen Textbook 2024 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Exaltation
11#
發(fā)表于 2025-3-23 12:13:43 | 只看該作者
Methoden der Mathematischen Physik ., and we provide a complete procedure in this chapter..By being able to assign a group to each (the roots of each) polynomial, we can in turn draw conclusions about the polynomial and its roots from the group structure. Therefore, in this chapter, we look at some very general statements about grou
12#
發(fā)表于 2025-3-23 14:32:57 | 只看該作者
Theorie der linearen Integralgleichungen,bsolute case over the rational numbers: First, we look at the relative case over suitable extensions of the original coefficient domain. Then we successively reduce the number field, so that the Galois group successively increases until we find the Galois group over the rational numbers in the limit
13#
發(fā)表于 2025-3-23 18:26:57 | 只看該作者
2731-3824 ght at the beginning of mathematics studies and is equally suitable for first-year students at the Bachelor‘s level and for teachers...The central statements are already summarised and concisely presented978-3-662-66642-5978-3-662-66643-2Series ISSN 2731-3824 Series E-ISSN 2731-3832
14#
發(fā)表于 2025-3-24 01:55:06 | 只看該作者
15#
發(fā)表于 2025-3-24 03:25:36 | 只看該作者
16#
發(fā)表于 2025-3-24 07:56:56 | 只看該作者
17#
發(fā)表于 2025-3-24 10:55:21 | 只看該作者
18#
發(fā)表于 2025-3-24 17:47:25 | 只看該作者
On the Solvability of Polynomial Equations,bsolute case over the rational numbers: First, we look at the relative case over suitable extensions of the original coefficient domain. Then we successively reduce the number field, so that the Galois group successively increases until we find the Galois group over the rational numbers in the limit
19#
發(fā)表于 2025-3-24 22:37:10 | 只看該作者
20#
發(fā)表于 2025-3-25 01:33:08 | 只看該作者
978-3-662-66642-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer-Verlag GmbH, DE
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 03:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
萨迦县| 武强县| 延川县| 关岭| 蒙自县| 中西区| 博客| 木里| 灌南县| 株洲市| 封开县| 舞阳县| 大厂| 澎湖县| 治多县| 金阳县| 宣恩县| 金溪县| 巍山| 大足县| 莱芜市| 双城市| 拉孜县| 乌拉特前旗| 阳山县| 启东市| 达州市| 安新县| 延津县| 康马县| 馆陶县| 石城县| 河津市| 丰城市| 信宜市| 陕西省| 大同市| 武功县| 南丹县| 丰顺县| 崇明县|