找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Galois Theory; A Constructive Appro Marc Nieper-Wi?kirchen Textbook 2024 The Editor(s) (if applicable) and The Author(s), under

[復(fù)制鏈接]
樓主: Exaltation
21#
發(fā)表于 2025-3-25 03:39:26 | 只看該作者
22#
發(fā)表于 2025-3-25 07:49:59 | 只看該作者
23#
發(fā)表于 2025-3-25 14:36:51 | 只看該作者
24#
發(fā)表于 2025-3-25 18:23:57 | 只看該作者
Methoden der Journalismusforschungizations of integers..In this context, we call a polynomial . if it does not allow such a factorization. In other words, the irreducible polynomials play the role of prime numbers in the ring of polynomials. Every linear polynomial . must be irreducible, because already for reasons of degree it cann
25#
發(fā)表于 2025-3-25 23:07:21 | 只看該作者
26#
發(fā)表于 2025-3-26 02:06:03 | 只看該作者
Theorie der linearen Integralgleichungen,ns out that the theory becomes much more powerful when we also consider extensions of the rational numbers as the coefficient domain. We call this view the ., while we refer to the rational number case as the ...For example, . is the minimal polynomial of a fourth root . of 2 over the rational numbe
27#
發(fā)表于 2025-3-26 05:26:03 | 只看該作者
28#
發(fā)表于 2025-3-26 12:23:31 | 只看該作者
29#
發(fā)表于 2025-3-26 15:33:40 | 只看該作者
https://doi.org/10.1007/978-3-662-66643-2Galois theory; Resolvability of polynomial equations; Constructability of regular n-corners; Impossibil
30#
發(fā)表于 2025-3-26 18:51:58 | 只看該作者
Marc Nieper-Wi?kirchenSuitable for first-year students in Bachelor‘s and teacher training programmes.Consistently constructive approach facilitates understanding.Core statements and essential arguments are summarised
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 21:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大田县| 康定县| 珠海市| 岳普湖县| 苗栗县| 商水县| 仪陇县| 盖州市| 鹤峰县| 玉溪市| 长寿区| 普宁市| 云霄县| 泰州市| 德保县| 泗水县| 杭锦后旗| 阿瓦提县| 宿州市| 福清市| 根河市| 西乡县| 资溪县| 泸西县| 虞城县| 长治县| 大渡口区| 太康县| 米脂县| 西城区| 谷城县| 卫辉市| 贡觉县| 阿鲁科尔沁旗| 咸宁市| 黔江区| 醴陵市| 柳江县| 湛江市| 昭通市| 泸溪县|