找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Extremal Polynomials and Riemann Surfaces; Andrei Bogatyrev Book 2012 Springer-Verlag Berlin Heidelberg 2012 Pell-Abel equation.Riemann su

[復(fù)制鏈接]
查看: 19653|回復(fù): 40
樓主
發(fā)表于 2025-3-21 16:41:34 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Extremal Polynomials and Riemann Surfaces
編輯Andrei Bogatyrev
視頻videohttp://file.papertrans.cn/321/320014/320014.mp4
概述Includes numerous problems and exercises which provide a deep insight in the subject and allow to conduct independent research in this topic.Contains many pictures which visualize involved theory.Desc
叢書名稱Springer Monographs in Mathematics
圖書封面Titlebook: Extremal Polynomials and Riemann Surfaces;  Andrei Bogatyrev Book 2012 Springer-Verlag Berlin Heidelberg 2012 Pell-Abel equation.Riemann su
描述.The problems of conditional optimization of the uniform (or C-) norm for polynomials and rational functions arise in various branches of science and technology. Their numerical solution is notoriously difficult in case of high degree functions. The book develops the classical Chebyshev‘s approach which gives analytical representation for the solution in terms of Riemann surfaces. The techniques born in the remote (at the first glance) branches of mathematics such as complex analysis, Riemann surfaces and Teichmüller theory, foliations, braids, topology are applied to? approximation problems. ?.The key feature of this book is the usage of beautiful ideas of contemporary mathematics for the solution of applied problems and their effective numerical realization. This is one of the few books? where the computational aspects of the higher genus Riemann surfaces are illuminated. Effective work with the moduli spaces of algebraic curves provides wide opportunities for numerical experiments in mathematics and theoretical physics.?.
出版日期Book 2012
關(guān)鍵詞Pell-Abel equation; Riemann surface; Schottky model; extremal polynomials; least deviation problems
版次1
doihttps://doi.org/10.1007/978-3-642-25634-9
isbn_softcover978-3-642-44332-9
isbn_ebook978-3-642-25634-9Series ISSN 1439-7382 Series E-ISSN 2196-9922
issn_series 1439-7382
copyrightSpringer-Verlag Berlin Heidelberg 2012
The information of publication is updating

書目名稱Extremal Polynomials and Riemann Surfaces影響因子(影響力)




書目名稱Extremal Polynomials and Riemann Surfaces影響因子(影響力)學(xué)科排名




書目名稱Extremal Polynomials and Riemann Surfaces網(wǎng)絡(luò)公開度




書目名稱Extremal Polynomials and Riemann Surfaces網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Extremal Polynomials and Riemann Surfaces被引頻次




書目名稱Extremal Polynomials and Riemann Surfaces被引頻次學(xué)科排名




書目名稱Extremal Polynomials and Riemann Surfaces年度引用




書目名稱Extremal Polynomials and Riemann Surfaces年度引用學(xué)科排名




書目名稱Extremal Polynomials and Riemann Surfaces讀者反饋




書目名稱Extremal Polynomials and Riemann Surfaces讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:21:26 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:59:20 | 只看該作者
Rusni Hassan,Nurul ’Iffah M. A. Zaabae as functions of a point . in the moduli space. In this chapter we develop a combinatorial geometric approach to the investigation of the period map. To curves . in the moduli space we shall assign in a one-to-one fashion trees . of a special form with edges labelled by positive numbers.
地板
發(fā)表于 2025-3-22 07:54:59 | 只看該作者
Wilhelm Schmeisser,Sebastian Bertram. Our analysis of the optimization Problem B in Chap. 1 enables us to figure out the characteristic features of the solution. We know that the optimal stability polynomial has many alternance points, so its extremality parameter . is not large.
5#
發(fā)表于 2025-3-22 11:35:08 | 只看該作者
6#
發(fā)表于 2025-3-22 14:16:58 | 只看該作者
Representations for the Moduli Space,f real hyperelliptic curves. For a fixed genus . this space consists of several components, which are distinguished by another topological invariant of a real curve, the number . of (co)real ovals on it.
7#
發(fā)表于 2025-3-22 20:55:33 | 只看該作者
8#
發(fā)表于 2025-3-22 22:10:25 | 只看該作者
9#
發(fā)表于 2025-3-23 03:42:39 | 只看該作者
978-3-642-44332-9Springer-Verlag Berlin Heidelberg 2012
10#
發(fā)表于 2025-3-23 09:22:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 21:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
若羌县| 汉中市| 涞水县| 罗江县| 巴塘县| 白水县| 三亚市| 济源市| 榆树市| 自治县| 汤原县| 镶黄旗| 乡城县| 张家口市| 临桂县| 海淀区| 泌阳县| 白城市| 田林县| 漳平市| 普陀区| 山东| 额尔古纳市| 桓台县| 南投市| 武鸣县| 嘉黎县| 喜德县| 龙胜| 交口县| 大同县| 扎鲁特旗| 常州市| 云林县| 辰溪县| 九江市| 丹巴县| 科技| 孝义市| 鹤壁市| 拉萨市|