找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extremal Polynomials and Riemann Surfaces; Andrei Bogatyrev Book 2012 Springer-Verlag Berlin Heidelberg 2012 Pell-Abel equation.Riemann su

[復(fù)制鏈接]
樓主: 平凡人
11#
發(fā)表于 2025-3-23 12:53:38 | 只看該作者
https://doi.org/10.1007/978-3-642-25634-9Pell-Abel equation; Riemann surface; Schottky model; extremal polynomials; least deviation problems
12#
發(fā)表于 2025-3-23 15:57:54 | 只看該作者
Andrei BogatyrevIncludes numerous problems and exercises which provide a deep insight in the subject and allow to conduct independent research in this topic.Contains many pictures which visualize involved theory.Desc
13#
發(fā)表于 2025-3-23 21:05:28 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/f/image/320014.jpg
14#
發(fā)表于 2025-3-23 23:39:29 | 只看該作者
,Haltestelle Ω: aktueller Einblick,t we investigate least deviation problems using methods of convex analysis. We deduce a generalized alternation principle which completely characterizes solutions of such problems. In giving the definition of an extremal polynomial in the introduction we were motivated by this principle.
15#
發(fā)表于 2025-3-24 05:39:51 | 只看該作者
16#
發(fā)表于 2025-3-24 10:25:39 | 只看該作者
17#
發(fā)表于 2025-3-24 11:16:00 | 只看該作者
18#
發(fā)表于 2025-3-24 18:36:40 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:27 | 只看該作者
https://doi.org/10.1007/978-981-10-2486-3In this chapter we study the structure of the set of curves . associated with real polynomials of degree . by means of the Chebyshev correspondence.
20#
發(fā)表于 2025-3-25 02:57:35 | 只看該作者
Xiaoxia Sun,Yu Jin,Xiaoxin HuangFirst of all, for an effective calculation of extremal polynomials we require the solution of Abel’s (6.1) defined on the universal cover of the moduli space. These equations have been thoroughly investigated in Chap. 5; here we present only the details required for computations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 01:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
德江县| 甘泉县| 秀山| 苗栗县| 江陵县| 萨嘎县| 华蓥市| 青冈县| 淳化县| 图们市| 独山县| 陵川县| 上饶市| 扶绥县| 九寨沟县| 保亭| 沙坪坝区| 阿城市| 阿克苏市| 同仁县| 西林县| 武穴市| 怀远县| 高清| 长白| 龙里县| 闽侯县| 轮台县| 绿春县| 武清区| 确山县| 延吉市| 梁山县| 鄂温| 太仓市| 肥城市| 韶山市| 荣昌县| 嵩明县| 乌鲁木齐县| 马鞍山市|