找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Extremal Polynomials and Riemann Surfaces; Andrei Bogatyrev Book 2012 Springer-Verlag Berlin Heidelberg 2012 Pell-Abel equation.Riemann su

[復(fù)制鏈接]
樓主: 平凡人
11#
發(fā)表于 2025-3-23 12:53:38 | 只看該作者
https://doi.org/10.1007/978-3-642-25634-9Pell-Abel equation; Riemann surface; Schottky model; extremal polynomials; least deviation problems
12#
發(fā)表于 2025-3-23 15:57:54 | 只看該作者
Andrei BogatyrevIncludes numerous problems and exercises which provide a deep insight in the subject and allow to conduct independent research in this topic.Contains many pictures which visualize involved theory.Desc
13#
發(fā)表于 2025-3-23 21:05:28 | 只看該作者
Springer Monographs in Mathematicshttp://image.papertrans.cn/f/image/320014.jpg
14#
發(fā)表于 2025-3-23 23:39:29 | 只看該作者
,Haltestelle Ω: aktueller Einblick,t we investigate least deviation problems using methods of convex analysis. We deduce a generalized alternation principle which completely characterizes solutions of such problems. In giving the definition of an extremal polynomial in the introduction we were motivated by this principle.
15#
發(fā)表于 2025-3-24 05:39:51 | 只看該作者
16#
發(fā)表于 2025-3-24 10:25:39 | 只看該作者
17#
發(fā)表于 2025-3-24 11:16:00 | 只看該作者
18#
發(fā)表于 2025-3-24 18:36:40 | 只看該作者
19#
發(fā)表于 2025-3-24 22:16:27 | 只看該作者
https://doi.org/10.1007/978-981-10-2486-3In this chapter we study the structure of the set of curves . associated with real polynomials of degree . by means of the Chebyshev correspondence.
20#
發(fā)表于 2025-3-25 02:57:35 | 只看該作者
Xiaoxia Sun,Yu Jin,Xiaoxin HuangFirst of all, for an effective calculation of extremal polynomials we require the solution of Abel’s (6.1) defined on the universal cover of the moduli space. These equations have been thoroughly investigated in Chap. 5; here we present only the details required for computations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-5 15:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
卢龙县| 漳州市| 邯郸县| 荔浦县| 临洮县| 庐江县| 岳西县| 扎兰屯市| 贵溪市| 灵宝市| 鞍山市| 育儿| 紫云| 托里县| 巩义市| 扶风县| 汽车| 天全县| 景德镇市| 宜都市| 陵川县| 墨竹工卡县| 湘乡市| 故城县| 盈江县| 濉溪县| 澄城县| 桂阳县| 科尔| 民权县| 西华县| 宾阳县| 肃南| 卢湾区| 罗田县| 太保市| 石泉县| 吉木萨尔县| 突泉县| 华蓥市| 凯里市|