找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions in Harmonic Analysis, Volume 6; In Honor of John Ben Matthew Hirn,Shidong Li,?zgür Yilmaz Book 2021 The Editor(s) (if applicable

[復(fù)制鏈接]
樓主: Ejaculation
21#
發(fā)表于 2025-3-25 05:16:21 | 只看該作者
22#
發(fā)表于 2025-3-25 08:06:30 | 只看該作者
https://doi.org/10.1007/978-3-0348-8514-0finite-dimensional almost Mathieu operator .. We furthermore show that the (properly rescaled) .-th Hermite function .. is an approximate eigenvector of ., and that it satisfies the same properties that characterize the true eigenvector associated with the .-th largest eigenvalue of .. Moreover, a p
23#
發(fā)表于 2025-3-25 13:56:20 | 只看該作者
24#
發(fā)表于 2025-3-25 19:41:56 | 只看該作者
William B. Langdon,Riccardo Polie proper properties for the problem. In order to compare elements of mixed dimension, we use a classical embedding to send all fusion frame elements to points on a higher dimensional Euclidean sphere, where they are given “equal footing.” Over the embedded images—a compact subset in the higher dimen
25#
發(fā)表于 2025-3-25 23:21:17 | 只看該作者
26#
發(fā)表于 2025-3-26 02:35:59 | 只看該作者
27#
發(fā)表于 2025-3-26 04:20:43 | 只看該作者
Yael Pritch,Moshe Ben-Ezra,Shmuel Pelegr which the local reconstruction properties of such a system extend to global stable recovery properties on the whole space. As a particular case, we obtain new local-to-global results for systems of type . arising in the dynamical sampling problem.
28#
發(fā)表于 2025-3-26 10:22:06 | 只看該作者
29#
發(fā)表于 2025-3-26 16:24:02 | 只看該作者
Intrinsic Expansion of the Lifeworld is to show that many of the topics studied in either field are also addressed in the other one, just with a different terminology. We further analyze the relations between discrete-time and continuous-time versions of the problem, using results from both fields..In addition, we will also differenti
30#
發(fā)表于 2025-3-26 20:11:49 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
九龙坡区| 察雅县| 中宁县| 鹿泉市| 天峨县| 谢通门县| 历史| 江都市| 津市市| 平昌县| 五河县| 阿巴嘎旗| 金秀| 茂名市| 乳山市| 慈溪市| 连城县| 瑞丽市| 拉萨市| 石首市| 青川县| 固镇县| 九江县| 开阳县| 铜陵市| 黄梅县| 上高县| 茶陵县| 安岳县| 沾益县| 屏南县| 光山县| 赣州市| 栖霞市| 胶州市| 鄱阳县| 天门市| 庐江县| 泗阳县| 涟源市| 沁源县|