找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions in Harmonic Analysis, Volume 6; In Honor of John Ben Matthew Hirn,Shidong Li,?zgür Yilmaz Book 2021 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 19783|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:12:43 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Excursions in Harmonic Analysis, Volume 6
副標(biāo)題In Honor of John Ben
編輯Matthew Hirn,Shidong Li,?zgür Yilmaz
視頻videohttp://file.papertrans.cn/319/318431/318431.mp4
概述Celebrates John J. Benedetto’s lasting impact on harmonic analysis and its applications.Covers a wide range of topics related to this field, illustrating the breadth of influence that Benedetto has ha
叢書名稱Applied and Numerical Harmonic Analysis
圖書封面Titlebook: Excursions in Harmonic Analysis, Volume 6; In Honor of John Ben Matthew Hirn,Shidong Li,?zgür Yilmaz Book 2021 The Editor(s) (if applicable
描述.John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume – compiled on the occasion of his 80.th. birthday – are written by leading researchers in the field and pay tribute to John’s many significant and lasting achievements.?Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization.?An introductory chapter also provides a brief overview of John’s life and mathematical career.?This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics..
出版日期Book 2021
關(guān)鍵詞John Benedetto harmonic analysis; Harmonic analysis and applications; Banach-Zaretsky theorem; Spectral
版次1
doihttps://doi.org/10.1007/978-3-030-69637-5
isbn_softcover978-3-030-69639-9
isbn_ebook978-3-030-69637-5Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Excursions in Harmonic Analysis, Volume 6影響因子(影響力)




書目名稱Excursions in Harmonic Analysis, Volume 6影響因子(影響力)學(xué)科排名




書目名稱Excursions in Harmonic Analysis, Volume 6網(wǎng)絡(luò)公開(kāi)度




書目名稱Excursions in Harmonic Analysis, Volume 6網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Excursions in Harmonic Analysis, Volume 6被引頻次




書目名稱Excursions in Harmonic Analysis, Volume 6被引頻次學(xué)科排名




書目名稱Excursions in Harmonic Analysis, Volume 6年度引用




書目名稱Excursions in Harmonic Analysis, Volume 6年度引用學(xué)科排名




書目名稱Excursions in Harmonic Analysis, Volume 6讀者反饋




書目名稱Excursions in Harmonic Analysis, Volume 6讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:58:50 | 只看該作者
Almost Eigenvalues and Eigenvectors of Almost Mathieu Operatorsfinite-dimensional almost Mathieu operator .. We furthermore show that the (properly rescaled) .-th Hermite function .. is an approximate eigenvector of ., and that it satisfies the same properties that characterize the true eigenvector associated with the .-th largest eigenvalue of .. Moreover, a p
地板
發(fā)表于 2025-3-22 07:16:47 | 只看該作者
5#
發(fā)表于 2025-3-22 12:46:15 | 只看該作者
A Notion of Optimal Packings of Subspaces with Mixed-Rank and Solutionse proper properties for the problem. In order to compare elements of mixed dimension, we use a classical embedding to send all fusion frame elements to points on a higher dimensional Euclidean sphere, where they are given “equal footing.” Over the embedded images—a compact subset in the higher dimen
6#
發(fā)表于 2025-3-22 12:55:31 | 只看該作者
Equiangular Frames and Their Dualsons in signal processing. Such sets are called . (ETFs). One of the geometrically appealing aspects of an ETF is that any vector can be represented in terms of an ETF by using a dual frame that is also an equiangular set. However, for a given . and ., with .?>?.?+?1, ETFs are rare. Here we study som
7#
發(fā)表于 2025-3-22 19:19:00 | 只看該作者
8#
發(fā)表于 2025-3-22 23:19:07 | 只看該作者
9#
發(fā)表于 2025-3-23 05:26:14 | 只看該作者
10#
發(fā)表于 2025-3-23 05:49:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
深水埗区| 资讯 | 锦屏县| 新竹县| 荣昌县| 高要市| 丰台区| 河南省| 阜新市| 秦安县| 西青区| 彭州市| 思茅市| 屏东市| 莎车县| 博湖县| 昭平县| 胶南市| 浦城县| 霍邱县| 元谋县| 新化县| 当涂县| 庆城县| 黑水县| 利津县| 城步| 马龙县| 罗江县| 宜城市| 平顺县| 建水县| 巴楚县| 房山区| 教育| 光泽县| 富锦市| 林州市| 靖边县| 军事| 宁河县|