找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Excursions in Harmonic Analysis, Volume 6; In Honor of John Ben Matthew Hirn,Shidong Li,?zgür Yilmaz Book 2021 The Editor(s) (if applicable

[復(fù)制鏈接]
查看: 19790|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:12:43 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Excursions in Harmonic Analysis, Volume 6
副標(biāo)題In Honor of John Ben
編輯Matthew Hirn,Shidong Li,?zgür Yilmaz
視頻videohttp://file.papertrans.cn/319/318431/318431.mp4
概述Celebrates John J. Benedetto’s lasting impact on harmonic analysis and its applications.Covers a wide range of topics related to this field, illustrating the breadth of influence that Benedetto has ha
叢書名稱Applied and Numerical Harmonic Analysis
圖書封面Titlebook: Excursions in Harmonic Analysis, Volume 6; In Honor of John Ben Matthew Hirn,Shidong Li,?zgür Yilmaz Book 2021 The Editor(s) (if applicable
描述.John J. Benedetto has had a profound influence not only on the direction of harmonic analysis and its applications, but also on the entire community of people involved in the field. The chapters in this volume – compiled on the occasion of his 80.th. birthday – are written by leading researchers in the field and pay tribute to John’s many significant and lasting achievements.?Covering a wide range of topics in harmonic analysis and related areas, these chapters are organized into four main parts: harmonic analysis, wavelets and frames, sampling and signal processing, and compressed sensing and optimization.?An introductory chapter also provides a brief overview of John’s life and mathematical career.?This volume will be an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics..
出版日期Book 2021
關(guān)鍵詞John Benedetto harmonic analysis; Harmonic analysis and applications; Banach-Zaretsky theorem; Spectral
版次1
doihttps://doi.org/10.1007/978-3-030-69637-5
isbn_softcover978-3-030-69639-9
isbn_ebook978-3-030-69637-5Series ISSN 2296-5009 Series E-ISSN 2296-5017
issn_series 2296-5009
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Excursions in Harmonic Analysis, Volume 6影響因子(影響力)




書目名稱Excursions in Harmonic Analysis, Volume 6影響因子(影響力)學(xué)科排名




書目名稱Excursions in Harmonic Analysis, Volume 6網(wǎng)絡(luò)公開度




書目名稱Excursions in Harmonic Analysis, Volume 6網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Excursions in Harmonic Analysis, Volume 6被引頻次




書目名稱Excursions in Harmonic Analysis, Volume 6被引頻次學(xué)科排名




書目名稱Excursions in Harmonic Analysis, Volume 6年度引用




書目名稱Excursions in Harmonic Analysis, Volume 6年度引用學(xué)科排名




書目名稱Excursions in Harmonic Analysis, Volume 6讀者反饋




書目名稱Excursions in Harmonic Analysis, Volume 6讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:42:35 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:58:50 | 只看該作者
Almost Eigenvalues and Eigenvectors of Almost Mathieu Operatorsfinite-dimensional almost Mathieu operator .. We furthermore show that the (properly rescaled) .-th Hermite function .. is an approximate eigenvector of ., and that it satisfies the same properties that characterize the true eigenvector associated with the .-th largest eigenvalue of .. Moreover, a p
地板
發(fā)表于 2025-3-22 07:16:47 | 只看該作者
5#
發(fā)表于 2025-3-22 12:46:15 | 只看該作者
A Notion of Optimal Packings of Subspaces with Mixed-Rank and Solutionse proper properties for the problem. In order to compare elements of mixed dimension, we use a classical embedding to send all fusion frame elements to points on a higher dimensional Euclidean sphere, where they are given “equal footing.” Over the embedded images—a compact subset in the higher dimen
6#
發(fā)表于 2025-3-22 12:55:31 | 只看該作者
Equiangular Frames and Their Dualsons in signal processing. Such sets are called . (ETFs). One of the geometrically appealing aspects of an ETF is that any vector can be represented in terms of an ETF by using a dual frame that is also an equiangular set. However, for a given . and ., with .?>?.?+?1, ETFs are rare. Here we study som
7#
發(fā)表于 2025-3-22 19:19:00 | 只看該作者
8#
發(fā)表于 2025-3-22 23:19:07 | 只看該作者
9#
發(fā)表于 2025-3-23 05:26:14 | 只看該作者
10#
發(fā)表于 2025-3-23 05:49:29 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 04:29
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
曲周县| 汪清县| 乐至县| 西安市| 当雄县| 芦溪县| 长寿区| 中西区| 嘉禾县| 通渭县| 弥勒县| 乃东县| 堆龙德庆县| 沅陵县| 聂荣县| 长垣县| 大足县| 河西区| 麦盖提县| 进贤县| 克拉玛依市| 前郭尔| 贵州省| 赣州市| 大姚县| 陇西县| 射阳县| 会泽县| 长汀县| 堆龙德庆县| 邯郸县| 临朐县| 资中县| 白沙| 平山县| 怀柔区| 墨竹工卡县| 湘西| 石林| 阿拉尔市| 南城县|