找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimating Ore Grade Using Evolutionary Machine Learning Models; Mohammad Ehteram,Zohreh Sheikh Khozani,Maliheh Abb Book 2023 The Editor(s

[復(fù)制鏈接]
查看: 50675|回復(fù): 42
樓主
發(fā)表于 2025-3-21 17:09:38 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models
編輯Mohammad Ehteram,Zohreh Sheikh Khozani,Maliheh Abb
視頻videohttp://file.papertrans.cn/316/315763/315763.mp4
概述Explains advanced method for predicting ore grade.Demonstrates different levels of ore grade modeling.Shows the uncertainty conceptions in the modeling process
圖書封面Titlebook: Estimating Ore Grade Using Evolutionary Machine Learning Models;  Mohammad Ehteram,Zohreh Sheikh Khozani,Maliheh Abb Book 2023 The Editor(s
描述.This book examines the abilities of new machine learning models for predicting ore grade in mining engineering. A variety of case studies are examined in this book. A motivation for preparing this book was the absence of robust models for estimating ore grade. Models of current books can also be used for the different sciences because they have high capabilities for estimating different variables. Mining engineers can use the book to determine the ore grade accurately. This book helps identify mineral-rich regions for exploration and exploitation. Exploration costs can be decreased by using the models in the current book. In this book, the author discusses the new concepts in mining engineering, such as uncertainty in ore grade modeling. Ensemble models are presented in this book to estimate ore grade. In the book, readers learn how to construct advanced machine learning models for estimating ore grade. The authors of this book present advanced and hybrid models used to estimate oregrade instead of the classic methods such as kriging. The current book can be used as a comprehensive handbook for estimating ore grades. Industrial managers and modelers can use the models of the curre
出版日期Book 2023
關(guān)鍵詞Ore Grade Estimation; Machine Learning Models; Optimization Algorithms; Ensemble Models; Bayesian model;
版次1
doihttps://doi.org/10.1007/978-981-19-8106-7
isbn_softcover978-981-19-8108-1
isbn_ebook978-981-19-8106-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapor
The information of publication is updating

書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models影響因子(影響力)




書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models影響因子(影響力)學(xué)科排名




書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models網(wǎng)絡(luò)公開度




書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models被引頻次




書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models被引頻次學(xué)科排名




書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models年度引用




書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models年度引用學(xué)科排名




書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models讀者反饋




書目名稱Estimating Ore Grade Using Evolutionary Machine Learning Models讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:53:53 | 只看該作者
板凳
發(fā)表于 2025-3-22 02:43:44 | 只看該作者
Predicting Aluminum Oxide Grade,, MLP-NMR, MLP-SSA, MLP-PSO, MLP-GA, and MLP models were 10.12, 10.98, 11.12, 12.23, 14.45, and 15.56 at the testing level. The Nash Sutcliffe efficiencies (NSE) of the BMA, MLP-NMR, MLP-SSA, MLP-PSO, MLP-GA, and MLP models were 0.94, 0.92, 0.89, 0.86, 0.84, and 0.82 at the testing level.
地板
發(fā)表于 2025-3-22 05:43:54 | 只看該作者
5#
發(fā)表于 2025-3-22 10:56:28 | 只看該作者
6#
發(fā)表于 2025-3-22 16:58:12 | 只看該作者
7#
發(fā)表于 2025-3-22 17:55:05 | 只看該作者
8#
發(fā)表于 2025-3-22 21:14:22 | 只看該作者
9#
發(fā)表于 2025-3-23 03:50:34 | 只看該作者
Estimating Iron Ore Grade,FA, GMDH-PSO, GMDH-GA, and GMDH were 4.55, 5.12, 5.54, 5.89, and 5.91. At the testing level, the GMDH-SSA decreased the MAE of the GMDH-SCA, GMDH-FFA, GMDH-PSO, GMDH-GA, and GMDH by 4.7, 14, 16, and 17%, respectively. The optimized GMDH models had a high potential for estimating iron ore grade.
10#
發(fā)表于 2025-3-23 07:07:07 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
胶南市| 四川省| 宿迁市| 崇阳县| 松潘县| 文登市| 张家界市| 宜阳县| 丹凤县| 临安市| 永丰县| 拉萨市| 新和县| 肃南| 南开区| 新化县| 东阿县| 柘荣县| 昌乐县| 九江县| 开鲁县| 北宁市| 河北省| 呈贡县| 清原| 吉木萨尔县| 滦南县| 山丹县| 深泽县| 大石桥市| 清丰县| 古蔺县| 灵武市| 永年县| 林甸县| 鹰潭市| 奉贤区| 响水县| 泽州县| 周宁县| 白山市|