找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimating Ore Grade Using Evolutionary Machine Learning Models; Mohammad Ehteram,Zohreh Sheikh Khozani,Maliheh Abb Book 2023 The Editor(s

[復(fù)制鏈接]
樓主: EXTRA
31#
發(fā)表于 2025-3-26 23:06:30 | 只看該作者
32#
發(fā)表于 2025-3-27 04:23:38 | 只看該作者
Neeta Sharma,Swati Sharma,Basant Prabhages and disadvantages of different models are described. This chapter presents the solutions for improving the accuracy of soft computing models. This chapter explains the details for quantifying uncertainty modeling. The chapter indicated that the artificial neural network models (ANN) had high cap
33#
發(fā)表于 2025-3-27 08:57:26 | 只看該作者
34#
發(fā)表于 2025-3-27 10:44:41 | 只看該作者
35#
發(fā)表于 2025-3-27 16:54:59 | 只看該作者
36#
發(fā)表于 2025-3-27 18:08:24 | 只看該作者
Estimating Ore Grade Using Evolutionary Machine Learning Models
37#
發(fā)表于 2025-3-27 22:37:55 | 只看該作者
Estimating Ore Grade Using Evolutionary Machine Learning Models978-981-19-8106-7
38#
發(fā)表于 2025-3-28 03:42:46 | 只看該作者
The Necessity of Grade Estimation,elers need robust models for estimating ore grade since it is a nonlinear and complex process. We investigate the potential of different models for estimating ore grade. We explain the advantages and disadvantages of models. The purpose of this chapter is to assist modelers in choosing the best mode
39#
發(fā)表于 2025-3-28 07:46:15 | 只看該作者
A Review of Modeling Approaches,rent models. The chapter also discusses the benefits of different soft computing models. This chapter aims to assess the potential of artificial neural networks for estimating ore grades. In addition, this chapter examines the research gaps for estimating ore grade in previous studies. Additionally,
40#
發(fā)表于 2025-3-28 13:29:52 | 只看該作者
Structure of Different Kinds of ANN Models, advanced operators. The advantages of each ANN model are discussed in this chapter. There are different layers in ANN models. Layers perform different tasks. The performance of ANN models depends on the parameters of ANNs. Different ANN models are compared for estimating ore grade in this chapter.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 02:07
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
普陀区| 乃东县| 榆林市| 阜康市| 桃江县| 凤庆县| 乾安县| 宝鸡市| 长宁区| 兴仁县| 文安县| 牡丹江市| 伊金霍洛旗| 长春市| 沈阳市| 高雄县| 张掖市| 沾益县| 南江县| 岑溪市| 北碚区| 睢宁县| 北京市| 荥经县| 崇义县| 滁州市| 乌拉特前旗| 长兴县| 白河县| 章丘市| 泽州县| 碌曲县| 德化县| 民勤县| 故城县| 嘉善县| 上杭县| 沂南县| 威远县| 阿荣旗| 弋阳县|