找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Estimating Ore Grade Using Evolutionary Machine Learning Models; Mohammad Ehteram,Zohreh Sheikh Khozani,Maliheh Abb Book 2023 The Editor(s

[復(fù)制鏈接]
樓主: EXTRA
11#
發(fā)表于 2025-3-23 12:17:57 | 只看該作者
12#
發(fā)表于 2025-3-23 16:00:56 | 只看該作者
Faheema Khan,Khalid Rehman Hakeemt tasks. The performance of ANN models depends on the parameters of ANNs. Different ANN models are compared for estimating ore grade in this chapter. A modeler can choose the best ANN model by understanding its different features.
13#
發(fā)表于 2025-3-23 22:02:14 | 只看該作者
14#
發(fā)表于 2025-3-23 23:29:26 | 只看該作者
15#
發(fā)表于 2025-3-24 04:40:54 | 只看該作者
16#
發(fā)表于 2025-3-24 07:28:39 | 只看該作者
https://doi.org/10.1007/978-94-011-1490-5 this chapter suggests solutions to improve the accuracy of models for estimating ore grades. This chapter examines the drawbacks of different models. The chapter indicated that ore grade could be accurately estimated using soft computing models.
17#
發(fā)表于 2025-3-24 12:45:53 | 只看該作者
Abazar Rajabi,Eric Schmieder Oberxplains the structure of different optimization algorithms for solving optimization problems. The advantages and disadvantages of different optimization algorithms are explained in this chapter. The optimization algorithms use advanced operators to adjust the ANN parameters.
18#
發(fā)表于 2025-3-24 17:31:41 | 只看該作者
Annie Ruttledge,Bhagirath S. Chauhans 8.12, 8.25, 8.57, and 8.98 for the RBFNN-SSO, RBFNN-SCA, RBFNN-FFA, and RBFNN. At the testing level, the IMM decreased the MAE of the RBFNN-SSO, RBFNN-SCA, RBFNN-FFA, and RFBNN by 0.9, 8.5, 17, and 20%, respectively. The results indicated that the IMM model was reliable for estimating ore grade.
19#
發(fā)表于 2025-3-24 21:49:51 | 只看該作者
Crop Rotation Defeats Pests and Weeds,FA, GMDH-PSO, GMDH-GA, and GMDH were 4.55, 5.12, 5.54, 5.89, and 5.91. At the testing level, the GMDH-SSA decreased the MAE of the GMDH-SCA, GMDH-FFA, GMDH-PSO, GMDH-GA, and GMDH by 4.7, 14, 16, and 17%, respectively. The optimized GMDH models had a high potential for estimating iron ore grade.
20#
發(fā)表于 2025-3-25 01:03:08 | 只看該作者
Neeta Sharma,Swati Sharma,Basant Prabhaabilities for estimating ore grades. This chapter indicated that the model parameters and input parameters are the uncertainty resources in the modeling process. Also, the optimization algorithms improved the accuracy of ANN models for estimating ore grade.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 07:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
拉萨市| 嘉峪关市| 安西县| 天柱县| 兰考县| 得荣县| 全南县| 双峰县| 思茅市| 黔南| 武安市| 海口市| 双柏县| 岳池县| 苍梧县| 海丰县| 波密县| 玉溪市| 济南市| 全椒县| 永春县| 郓城县| 山东省| 霍州市| 西宁市| 开平市| 宕昌县| 永州市| 岳阳县| 静海县| 建水县| 松原市| 西城区| 通海县| 邯郸县| 文成县| 思茅市| 墨竹工卡县| 会同县| 特克斯县| 浙江省|