找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Dependable and Secure Machine Learning Systems; Third International Onn Shehory,Eitan Farchi,Guy Barash Conference proceedings

[復制鏈接]
樓主: Coronary-Artery
31#
發(fā)表于 2025-3-27 00:05:54 | 只看該作者
Principal Component Properties of Adversarial Samples,a benign image that can easily fool trained neural networks, posing a significant risk to their commercial deployment. In this work, we analyze adversarial samples through the lens of their contributions to the principal components of . image, which is different than prior works in which authors per
32#
發(fā)表于 2025-3-27 02:09:38 | 只看該作者
33#
發(fā)表于 2025-3-27 08:50:46 | 只看該作者
Density Estimation in Representation Space to Predict Model Uncertainty,ir training dataset. We propose a novel and straightforward approach to estimate prediction uncertainty in a pre-trained neural network model. Our method estimates the training data density in representation space for a novel input. A neural network model then uses this information to determine whet
34#
發(fā)表于 2025-3-27 11:14:04 | 只看該作者
Automated Detection of Drift in Deep Learning Based Classifiers Performance Using Network Embeddingly sampled test set is used to estimate the performance (e.g., accuracy) of the neural network during deployment time. The performance on the test set is used to project the performance of the neural network at deployment time under the implicit assumption that the data distribution of the test set
35#
發(fā)表于 2025-3-27 16:41:21 | 只看該作者
36#
發(fā)表于 2025-3-27 19:29:28 | 只看該作者
Dependable Neural Networks for Safety Critical Tasks, perform safely in novel scenarios. It is challenging to verify neural networks because their decisions are not explainable, they cannot be exhaustively tested, and finite test samples cannot capture the variation across all operating conditions. Existing work seeks to train models robust to new sce
37#
發(fā)表于 2025-3-27 22:21:19 | 只看該作者
38#
發(fā)表于 2025-3-28 05:32:03 | 只看該作者
Neue Entwicklungen und Zukunftsperspektiven,TSRB and MS-COCO. Our initial results suggest that using attention mask leads to improved robustness. On the adversarially trained classifiers, we see an adversarial robustness increase of over 20% on MS-COCO.
39#
發(fā)表于 2025-3-28 07:59:39 | 只看該作者
40#
發(fā)表于 2025-3-28 11:58:23 | 只看該作者
Technischer Lehrgang: Hydraulische Systemeerformance assessment. Here we demonstrate a novel technique, called IBM FreaAI, which automatically extracts explainable feature slices for which the ML solution’s performance is statistically significantly worse than the average. We demonstrate results of evaluating ML classifier models on seven o
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
岗巴县| 宜君县| 香港 | 化隆| 京山县| 桦川县| 什邡市| 休宁县| 龙川县| 翁源县| 汉川市| 克什克腾旗| 津南区| 库车县| 青海省| 遂溪县| 灵石县| 容城县| 鸡西市| 调兵山市| 北川| 米林县| 连平县| 叶城县| 额济纳旗| 汉源县| 盱眙县| 西畴县| 南昌县| 大埔区| 霍邱县| 云龙县| 苏尼特右旗| 高碑店市| 林州市| 丹棱县| 南雄市| 河源市| 通许县| 兴山县| 邵东县|