找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Dependable and Secure Machine Learning Systems; Third International Onn Shehory,Eitan Farchi,Guy Barash Conference proceedings

[復制鏈接]
樓主: Coronary-Artery
11#
發(fā)表于 2025-3-23 13:09:52 | 只看該作者
Principal Component Properties of Adversarial Samples,ns to the principal components of neural network inputs. We propose a new metric for neural networks to measure their robustness to adversarial samples, termed the (.,?.) point. We utilize this metric to achieve 93.36% accuracy in detecting adversarial samples independent of architecture and attack type for models trained on ImageNet.
12#
發(fā)表于 2025-3-23 14:03:54 | 只看該作者
1865-0929 Systems, EDSMLS 2020, held in?New York City, NY, USA, in February 2020.?.The 7 full papers and 3 short papers were thoroughly reviewed and selected from 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML soft
13#
發(fā)表于 2025-3-23 20:11:09 | 只看該作者
Communications in Computer and Information Sciencehttp://image.papertrans.cn/e/image/310749.jpg
14#
發(fā)表于 2025-3-24 01:27:05 | 只看該作者
15#
發(fā)表于 2025-3-24 03:42:30 | 只看該作者
Neue Entwicklungen und Zukunftsperspektiven, to fool a model, but appear normal to human beings. Recent work has shown that pixel discretization can be used to make classifiers for MNIST highly robust to adversarial examples. However, pixel discretization fails to provide significant protection on more complex datasets. In this paper, we take
16#
發(fā)表于 2025-3-24 06:54:01 | 只看該作者
https://doi.org/10.1007/978-3-322-86803-9wever, while poisoning attacks typically corrupt data in various ways including addition, omission and modification, to optimize the attack, we focus on omission only, which is much simpler to implement and analyze. A major advantage of our attack method is its generality. While poisoning attacks ar
17#
發(fā)表于 2025-3-24 13:32:54 | 只看該作者
18#
發(fā)表于 2025-3-24 15:07:32 | 只看該作者
19#
發(fā)表于 2025-3-24 19:46:14 | 只看該作者
20#
發(fā)表于 2025-3-25 00:54:01 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:45
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
阿拉尔市| 荆州市| 化隆| 原平市| 万安县| 枞阳县| 卢氏县| 图片| 吉水县| 东海县| 河南省| 广昌县| 武鸣县| 夹江县| 吉林省| 霍山县| 浦城县| 探索| 八宿县| 绿春县| 济阳县| 广安市| 龙门县| 镇沅| 资溪县| 贵定县| 闻喜县| 吉安县| 油尖旺区| 平原县| 璧山县| 镇巴县| 大城县| 微博| 台东县| 绥江县| 淄博市| 泸水县| 内黄县| 沙坪坝区| 孟津县|