找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Engineering Dependable and Secure Machine Learning Systems; Third International Onn Shehory,Eitan Farchi,Guy Barash Conference proceedings

[復(fù)制鏈接]
查看: 15669|回復(fù): 42
樓主
發(fā)表于 2025-3-21 19:36:32 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems
副標(biāo)題Third International
編輯Onn Shehory,Eitan Farchi,Guy Barash
視頻videohttp://file.papertrans.cn/311/310749/310749.mp4
叢書(shū)名稱Communications in Computer and Information Science
圖書(shū)封面Titlebook: Engineering Dependable and Secure Machine Learning Systems; Third International  Onn Shehory,Eitan Farchi,Guy Barash Conference proceedings
描述This book constitutes the revised selected papers of the?Third International Workshop on?Engineering Dependable and Secure Machine Learning Systems, EDSMLS 2020, held in?New York City, NY, USA, in February 2020.?.The 7 full papers and 3 short papers were thoroughly reviewed and selected from 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML software systems, adversarial ML and software engineering, etc.?.
出版日期Conference proceedings 2020
關(guān)鍵詞artificial intelligence; computer networks; computer programming; computer security; computer systems; co
版次1
doihttps://doi.org/10.1007/978-3-030-62144-5
isbn_softcover978-3-030-62143-8
isbn_ebook978-3-030-62144-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
issn_series 1865-0929
copyrightSpringer Nature Switzerland AG 2020
The information of publication is updating

書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems影響因子(影響力)




書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems影響因子(影響力)學(xué)科排名




書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems被引頻次




書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems被引頻次學(xué)科排名




書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems年度引用




書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems年度引用學(xué)科排名




書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems讀者反饋




書(shū)目名稱Engineering Dependable and Secure Machine Learning Systems讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:18:11 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:55:18 | 只看該作者
,Konstruktion l?rmarmer Maschinen,ency information. We show that on all quantitative and qualitative evaluations, the combined model gives the best results, but also that only training with RL and without any syntactic information already gives nearly as good results as syntax-aware models with less parameters and faster training convergence.
地板
發(fā)表于 2025-3-22 08:34:35 | 只看該作者
Learner-Independent Targeted Data Omission Attacks, this effectiveness via a series of attack experiments against various learning mechanisms. We show that, with a relatively low attack budget, our omission attack succeeds regardless of the target learner.
5#
發(fā)表于 2025-3-22 08:48:38 | 只看該作者
6#
發(fā)表于 2025-3-22 16:02:21 | 只看該作者
7#
發(fā)表于 2025-3-22 19:14:00 | 只看該作者
8#
發(fā)表于 2025-3-23 01:06:41 | 只看該作者
1865-0929 om 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML software systems, adversarial ML and software engineering, etc.?.978-3-030-62143-8978-3-030-62144-5Series ISSN 1865-0929 Series E-ISSN 1865-0937
9#
發(fā)表于 2025-3-23 04:32:34 | 只看該作者
Conference proceedings 2020DSMLS 2020, held in?New York City, NY, USA, in February 2020.?.The 7 full papers and 3 short papers were thoroughly reviewed and selected from 16 submissions. The volume presents original research on dependability and quality assurance of ML software systems, adversarial attacks on ML software syste
10#
發(fā)表于 2025-3-23 07:00:39 | 只看該作者
,Thermische oder mechanische überbelastung,ns to the principal components of neural network inputs. We propose a new metric for neural networks to measure their robustness to adversarial samples, termed the (.,?.) point. We utilize this metric to achieve 93.36% accuracy in detecting adversarial samples independent of architecture and attack type for models trained on ImageNet.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 16:41
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
贞丰县| 昌都县| 泰安市| 庆云县| 仪征市| 杭州市| 醴陵市| 二手房| 永安市| 定南县| 双流县| 岳池县| 麻城市| 广水市| 军事| 龙井市| 海宁市| 浑源县| 高清| 两当县| 茌平县| 聂拉木县| 卓尼县| 梨树县| 奇台县| 资溪县| 永嘉县| 海丰县| 左权县| 永福县| 酒泉市| 南丰县| 庆云县| 远安县| 凤冈县| 体育| 花莲市| 涞水县| 鄂伦春自治旗| 庆元县| 华安县|