找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Quantum Groups; Representations and Hitoshi Konno Book 2020 Springer Nature Singapore Pte Ltd. 2020 Elliptic quantum groups.Verte

[復(fù)制鏈接]
樓主: 法令
21#
發(fā)表于 2025-3-25 04:19:44 | 只看該作者
Elliptic Quantum Group ,,tion. In addition, following the quasi-Hopf formulation ., we introduce the ..-operator and show that the difference between the +? and the ? half currents gives the elliptic currents of .. Furthermore a connection to Felder’s formulation is shown by introducing the dynamical .-operators.
22#
發(fā)表于 2025-3-25 08:36:56 | 只看該作者
The ,-Hopf-Algebroid Structure of ,,t certain shifts by . and . in . when they move from one tensor component to the other. These shifts produce the same effects as the dynamical shift in the DYBE and the dynamical .-relation. Hence the .-Hopf-algebroid structure provides a convenient co-algebra structure compatible with the dynamical shift. See Chaps. .–..
23#
發(fā)表于 2025-3-25 14:26:55 | 只看該作者
Representations of ,,al., Comm. Math. Phys. ., 605–647 (1999); Kojima and Konno, Comm. Math. Phys. ., 405–447 (2003); Konno, SIGMA, ., Paper 091, 25 pages (2006); Farghly et al., Algebr. Represent. Theory ., 103–135 (2014)).
24#
發(fā)表于 2025-3-25 16:08:03 | 只看該作者
25#
發(fā)表于 2025-3-25 21:00:38 | 只看該作者
Related Geometry,n be identified with .. Based on this identification, we also show a correspondence between the Gelfand-Tsetlin basis (resp. the standard basis) of . in Chap. . and the fixed point classes (resp. the stable classes) in E.(.). This correspondence allows us to construct an action of . on E.(.).
26#
發(fā)表于 2025-3-26 02:23:31 | 只看該作者
27#
發(fā)表于 2025-3-26 04:18:37 | 只看該作者
28#
發(fā)表于 2025-3-26 12:12:02 | 只看該作者
Tensor Product Representation,s matrix from the standard basis to the Gelfand-Tsetlin basis is given by a specialization of the elliptic weight functions. The resultant action is expressed in a perfectly combinatorial way in terms of the partitions of [1, .]. In Chap. . we discuss a geometric interpretation of it.
29#
發(fā)表于 2025-3-26 15:18:06 | 只看該作者
30#
發(fā)表于 2025-3-26 18:07:32 | 只看該作者
William Weaver Jr.,James M. Gereal., Comm. Math. Phys. ., 605–647 (1999); Kojima and Konno, Comm. Math. Phys. ., 405–447 (2003); Konno, SIGMA, ., Paper 091, 25 pages (2006); Farghly et al., Algebr. Represent. Theory ., 103–135 (2014)).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 20:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
遂川县| 宁陵县| 小金县| 贵港市| 锦屏县| 宜春市| 民权县| 东乡族自治县| 炉霍县| 马关县| 肥东县| 哈巴河县| 镇安县| 乾安县| 桂阳县| 金塔县| 集安市| 乳源| 莆田市| 金塔县| 彭水| 辽阳县| 色达县| 杂多县| 新建县| 新密市| 隆昌县| 西宁市| 黄大仙区| 巩留县| 台东市| 灵丘县| 南康市| 汕尾市| 西贡区| 定日县| 民乐县| 长宁县| 泾川县| 乌兰县| 淳化县|