找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Quantum Groups; Representations and Hitoshi Konno Book 2020 Springer Nature Singapore Pte Ltd. 2020 Elliptic quantum groups.Verte

[復(fù)制鏈接]
查看: 19538|回復(fù): 44
樓主
發(fā)表于 2025-3-21 16:04:35 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Elliptic Quantum Groups
副標(biāo)題Representations and
編輯Hitoshi Konno
視頻videohttp://file.papertrans.cn/308/307805/307805.mp4
概述Provides the first survey of elliptic quantum groups.Describes the elliptic quantum group concretely and pedagogically in the simplest setting.Contains finite and infinite dimensional representations
叢書名稱SpringerBriefs in Mathematical Physics
圖書封面Titlebook: Elliptic Quantum Groups; Representations and  Hitoshi Konno Book 2020 Springer Nature Singapore Pte Ltd. 2020 Elliptic quantum groups.Verte
描述This is the first book on elliptic quantum groups, i.e., quantum groups associated to elliptic solutions of the Yang-Baxter equation. Based on research by the author and his collaborators, the book presents a comprehensive survey on the subject including a brief history of formulations and applications, a detailed formulation of the elliptic quantum group in the Drinfeld realization,? explicit? construction of both finite and infinite-dimensional representations, and? a construction of the vertex operators as intertwining operators of these representations. The vertex operators are important objects in representation theory of quantum groups.? In this book, they are used to derive the elliptic q-KZ equations and their elliptic hypergeometric integral solutions. In particular, the so-called elliptic weight functions appear in such solutions.? The author’s recent study showed that these elliptic weight functions are identified with Okounkov’s elliptic stableenvelopes for certain equivariant elliptic cohomology and play an important role to construct geometric representations of elliptic quantum groups. Okounkov’s? geometric approach to quantum integrable systems is a rapidly growing
出版日期Book 2020
關(guān)鍵詞Elliptic quantum groups; Vertex operators; q-KZ equations; Elliptic stable envelopes; Quantum integrable
版次1
doihttps://doi.org/10.1007/978-981-15-7387-3
isbn_softcover978-981-15-7386-6
isbn_ebook978-981-15-7387-3Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightSpringer Nature Singapore Pte Ltd. 2020
The information of publication is updating

書目名稱Elliptic Quantum Groups影響因子(影響力)




書目名稱Elliptic Quantum Groups影響因子(影響力)學(xué)科排名




書目名稱Elliptic Quantum Groups網(wǎng)絡(luò)公開度




書目名稱Elliptic Quantum Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Elliptic Quantum Groups被引頻次




書目名稱Elliptic Quantum Groups被引頻次學(xué)科排名




書目名稱Elliptic Quantum Groups年度引用




書目名稱Elliptic Quantum Groups年度引用學(xué)科排名




書目名稱Elliptic Quantum Groups讀者反饋




書目名稱Elliptic Quantum Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:18:22 | 只看該作者
板凳
發(fā)表于 2025-3-22 00:32:47 | 只看該作者
Projections and Projection Matrices, (quantum) equivariant cohomology, and deformed .-algebras. A brief history of elliptic quantum groups is also given. There are some different formulations developed independently and sometimes dependently. They are classified by their generators and co-algebra structures into the following three :
地板
發(fā)表于 2025-3-22 07:53:07 | 只看該作者
5#
發(fā)表于 2025-3-22 09:54:40 | 只看該作者
6#
發(fā)表于 2025-3-22 15:51:28 | 只看該作者
7#
發(fā)表于 2025-3-22 19:50:14 | 只看該作者
Eugenius Kaszkurewicz,Amit Bhayaquantum group modules. In this chapter, we discuss the vertex operators of the .-modules. There are two types of them, type I and II, due to an asymmetry of the comultiplication with respect to the tensor components. By using the evaluation representation and the level-1 highest weight representatio
8#
發(fā)表于 2025-3-23 00:26:02 | 只看該作者
Multi-field Coupling Numerical Simulation, Varchenko, Astérisque . (1997); Mimachi, Duke Math. J. ., 635–658 (1996); Matsuo, Comm. Math. Phys. ., 263–273 (1993)). Recently it has been shown (Gorbounov et al., J. Geom. Phys. ., 56–86 (2013); Rimányi et al., J. Geom. Phys. ., 81–119 (2015)) that they can be identified with the stable envelope
9#
發(fā)表于 2025-3-23 05:07:58 | 只看該作者
10#
發(fā)表于 2025-3-23 06:50:30 | 只看該作者
Marc Arnaudon,Frédéric Barbaresco,Le Yang elliptic .-KZ equation. A key to this is a cyclic property of trace and the exchange relation of the vertex operators. Evaluating the trace explicitly we also give an elliptic hypergeometric integral solution to the equation (Konno, J. Integrable Syst. ., 1–43 (2017)).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 07:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
外汇| 中江县| 南部县| 泸西县| 瑞昌市| 石门县| 屯门区| 西昌市| 额尔古纳市| 南投县| 慈利县| 大新县| 辽宁省| 德阳市| 开封市| 嘉祥县| 江川县| 盐亭县| 土默特右旗| 通道| 资中县| 论坛| 梁河县| 贵溪市| 普兰县| 巴彦淖尔市| 平定县| 东莞市| 正定县| 汪清县| 大余县| 尤溪县| 合川市| 大同市| 福安市| 温泉县| 咸阳市| 潮州市| 铅山县| 西城区| 壤塘县|