找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Quantum Groups; Representations and Hitoshi Konno Book 2020 Springer Nature Singapore Pte Ltd. 2020 Elliptic quantum groups.Verte

[復(fù)制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 13:38:04 | 只看該作者
12#
發(fā)表于 2025-3-23 16:14:00 | 只看該作者
13#
發(fā)表于 2025-3-23 19:07:16 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:35 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:01 | 只看該作者
16#
發(fā)表于 2025-3-24 08:03:02 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:22 | 只看該作者
2197-1757 ng.Contains finite and infinite dimensional representations This is the first book on elliptic quantum groups, i.e., quantum groups associated to elliptic solutions of the Yang-Baxter equation. Based on research by the author and his collaborators, the book presents a comprehensive survey on the sub
18#
發(fā)表于 2025-3-24 18:45:35 | 只看該作者
Projections and Projection Matrices,tions developed independently and sometimes dependently. They are classified by their generators and co-algebra structures into the following three : the Quasi-Hopf-algebra formulation . (the vertex type), . (the face type), the FRST formulation . (the face type) and the Drinfeld realization . (the face type).
19#
發(fā)表于 2025-3-24 21:50:51 | 只看該作者
Subscapular System Flaps: An Introductions matrix from the standard basis to the Gelfand-Tsetlin basis is given by a specialization of the elliptic weight functions. The resultant action is expressed in a perfectly combinatorial way in terms of the partitions of [1, .]. In Chap. . we discuss a geometric interpretation of it.
20#
發(fā)表于 2025-3-25 00:43:19 | 只看該作者
Matrices in Classical Statistical Mechanics,tion. In addition, following the quasi-Hopf formulation ., we introduce the ..-operator and show that the difference between the +? and the ? half currents gives the elliptic currents of .. Furthermore a connection to Felder’s formulation is shown by introducing the dynamical .-operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-30 08:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
茶陵县| 无为县| 西青区| 登封市| 渝北区| 集安市| 武功县| 铁力市| 寿阳县| 郸城县| 大渡口区| 武隆县| 利川市| 民县| 修武县| 安义县| 辽中县| 新民市| 宜州市| 平度市| 富平县| 襄汾县| 白朗县| 吉安市| 商洛市| 凤台县| 资阳市| 海林市| 随州市| 太谷县| 九台市| 苏州市| 信宜市| 西吉县| 阳信县| 兴化市| 溧水县| 灌南县| 柳河县| 连山| 大城县|