找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Quantum Groups; Representations and Hitoshi Konno Book 2020 Springer Nature Singapore Pte Ltd. 2020 Elliptic quantum groups.Verte

[復(fù)制鏈接]
樓主: 法令
11#
發(fā)表于 2025-3-23 13:38:04 | 只看該作者
12#
發(fā)表于 2025-3-23 16:14:00 | 只看該作者
13#
發(fā)表于 2025-3-23 19:07:16 | 只看該作者
14#
發(fā)表于 2025-3-23 22:23:35 | 只看該作者
15#
發(fā)表于 2025-3-24 03:00:01 | 只看該作者
16#
發(fā)表于 2025-3-24 08:03:02 | 只看該作者
17#
發(fā)表于 2025-3-24 14:03:22 | 只看該作者
2197-1757 ng.Contains finite and infinite dimensional representations This is the first book on elliptic quantum groups, i.e., quantum groups associated to elliptic solutions of the Yang-Baxter equation. Based on research by the author and his collaborators, the book presents a comprehensive survey on the sub
18#
發(fā)表于 2025-3-24 18:45:35 | 只看該作者
Projections and Projection Matrices,tions developed independently and sometimes dependently. They are classified by their generators and co-algebra structures into the following three : the Quasi-Hopf-algebra formulation . (the vertex type), . (the face type), the FRST formulation . (the face type) and the Drinfeld realization . (the face type).
19#
發(fā)表于 2025-3-24 21:50:51 | 只看該作者
Subscapular System Flaps: An Introductions matrix from the standard basis to the Gelfand-Tsetlin basis is given by a specialization of the elliptic weight functions. The resultant action is expressed in a perfectly combinatorial way in terms of the partitions of [1, .]. In Chap. . we discuss a geometric interpretation of it.
20#
發(fā)表于 2025-3-25 00:43:19 | 只看該作者
Matrices in Classical Statistical Mechanics,tion. In addition, following the quasi-Hopf formulation ., we introduce the ..-operator and show that the difference between the +? and the ? half currents gives the elliptic currents of .. Furthermore a connection to Felder’s formulation is shown by introducing the dynamical .-operators.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-29 20:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
大英县| 万荣县| 营口市| 缙云县| 桐柏县| 星座| 龙游县| 娄底市| 广饶县| 安阳市| 库伦旗| 邳州市| 三门县| 米泉市| 保靖县| 晋州市| 临沭县| 文水县| 东至县| 庆云县| 文昌市| 乐清市| 大城县| 从江县| 扎囊县| 康平县| 中山市| 塔城市| 沂源县| 井冈山市| 日土县| 明星| 明水县| 长顺县| 鹰潭市| 当雄县| 深水埗区| 漯河市| 兴仁县| 五原县| 内黄县|