找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin

[復(fù)制鏈接]
樓主: Malinger
31#
發(fā)表于 2025-3-26 21:52:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:39 | 只看該作者
https://doi.org/10.1007/978-3-319-45032-211R23, 11F11, 11F67; Iwasawa Theory; Elliptic Curves; Modular Forms; Number Theory; John Coates
33#
發(fā)表于 2025-3-27 06:18:58 | 只看該作者
2194-1009 his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference .Elliptic Curves, Modular Forms
34#
發(fā)表于 2025-3-27 13:00:51 | 只看該作者
Compactifications of S-arithmetic Quotients for the Projective General Linear Group, the polyhedral compactification of . of Gérardin and Landvogt) for . archimedean (resp., non-archimedean). We also consider a variant of . in which we use the standard Satake compactification of . (resp., the compactification of . due to Werner).
35#
發(fā)表于 2025-3-27 17:16:31 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:57 | 只看該作者
Conference proceedings 201670.th .?birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. . .This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.?.
37#
發(fā)表于 2025-3-27 22:18:33 | 只看該作者
38#
發(fā)表于 2025-3-28 03:14:28 | 只看該作者
39#
發(fā)表于 2025-3-28 09:43:50 | 只看該作者
40#
發(fā)表于 2025-3-28 13:07:18 | 只看該作者
https://doi.org/10.1007/978-3-662-65528-3 the polyhedral compactification of . of Gérardin and Landvogt) for . archimedean (resp., non-archimedean). We also consider a variant of . in which we use the standard Satake compactification of . (resp., the compactification of . due to Werner).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
绿春县| 刚察县| 三河市| 鄯善县| 兴义市| 吉木乃县| 临汾市| 宜春市| 三台县| 文登市| 甘洛县| 康乐县| 大关县| 沙坪坝区| 洛川县| 长垣县| 通榆县| 读书| 施秉县| 苏州市| 景宁| 修水县| 呼图壁县| 额敏县| 永城市| 元朗区| 宁陵县| 宁远县| 宣武区| 华安县| 包头市| 灵山县| 三都| 托里县| 永昌县| 樟树市| 华安县| 青河县| 襄樊市| 平顶山市| 莱芜市|