找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin

[復制鏈接]
樓主: Malinger
41#
發(fā)表于 2025-3-28 18:00:56 | 只看該作者
https://doi.org/10.1007/978-3-662-28432-2patible systems. Our main result is that in a sufficiently irreducible compatible system the residual images are big at a density one set of primes. This result should make some of the work of Clozel, Harris and Taylor easier to apply in the setting of compatible systems.
42#
發(fā)表于 2025-3-28 20:31:03 | 只看該作者
43#
發(fā)表于 2025-3-29 01:31:07 | 只看該作者
Compactifications of S-arithmetic Quotients for the Projective General Linear Group,metric space (resp., Bruhat-Tits building) associated to . if . is archimedean (resp., non-archimedean). In this paper, we construct compactifications . of the quotient spaces . for .-arithmetic subgroups . of .. The constructions make delicate use of the maximal Satake compactification of . (resp.,
44#
發(fā)表于 2025-3-29 05:47:44 | 只看該作者
,Control of ,-adic Mordell–Weil Groups,algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary part of the .-MW groups under mild assumptions. We have proven a similar control theorem for the dual completed inductive limit in [.].
45#
發(fā)表于 2025-3-29 09:07:37 | 只看該作者
Some Congruences for Non-CM Elliptic Curves,ents of Iwasawa algebras of abelian sub-quotients of . due to the work of Ritter-Weiss and Kato (generalised by the author). In the former one needs to work with all abelian subquotients of . whereas in Kato’s approach one can work with a certain well-chosen sub-class of abelian sub-quotients of ..
46#
發(fā)表于 2025-3-29 13:52:02 | 只看該作者
,On ,-adic Interpolation of Motivic Eisenstein?Classes, étale cohomology. This connects them to Iwasawa theory and generalizes and strengthens the results for elliptic curves obtained in our former work. In particular, degeneration questions can be treated easily.
47#
發(fā)表于 2025-3-29 18:21:28 | 只看該作者
48#
發(fā)表于 2025-3-29 23:02:01 | 只看該作者
,Coates–Wiles Homomorphisms and Iwasawa Cohomology for Lubin–Tate Extensions, terms of the .-operator acting on the attached etale .-module .(.). In this chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers . over finite extensions . of . by using the Kisin–Ren/Fontaine equivalence of categories between Galois representations and .-modules and e
49#
發(fā)表于 2025-3-30 01:36:09 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 09:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
九寨沟县| 会东县| 乌兰察布市| 临高县| 福海县| 鄱阳县| 通州市| 南平市| 双柏县| 治多县| 图们市| 巨野县| 富民县| 拉孜县| 宜兰县| 高陵县| 大埔县| 兰溪市| 西峡县| 资兴市| 临安市| 万山特区| 汝阳县| 新源县| 松原市| 灯塔市| 彭山县| 安西县| 五家渠市| 哈巴河县| 淳化县| 潼南县| 泽库县| 栾川县| 诸暨市| 天等县| 青浦区| 渝北区| 育儿| 濉溪县| 南阳市|