找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin

[復(fù)制鏈接]
樓主: Malinger
31#
發(fā)表于 2025-3-26 21:52:40 | 只看該作者
32#
發(fā)表于 2025-3-27 01:16:39 | 只看該作者
https://doi.org/10.1007/978-3-319-45032-211R23, 11F11, 11F67; Iwasawa Theory; Elliptic Curves; Modular Forms; Number Theory; John Coates
33#
發(fā)表于 2025-3-27 06:18:58 | 只看該作者
2194-1009 his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference .Elliptic Curves, Modular Forms
34#
發(fā)表于 2025-3-27 13:00:51 | 只看該作者
Compactifications of S-arithmetic Quotients for the Projective General Linear Group, the polyhedral compactification of . of Gérardin and Landvogt) for . archimedean (resp., non-archimedean). We also consider a variant of . in which we use the standard Satake compactification of . (resp., the compactification of . due to Werner).
35#
發(fā)表于 2025-3-27 17:16:31 | 只看該作者
36#
發(fā)表于 2025-3-27 19:17:57 | 只看該作者
Conference proceedings 201670.th .?birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. . .This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.?.
37#
發(fā)表于 2025-3-27 22:18:33 | 只看該作者
38#
發(fā)表于 2025-3-28 03:14:28 | 只看該作者
39#
發(fā)表于 2025-3-28 09:43:50 | 只看該作者
40#
發(fā)表于 2025-3-28 13:07:18 | 只看該作者
https://doi.org/10.1007/978-3-662-65528-3 the polyhedral compactification of . of Gérardin and Landvogt) for . archimedean (resp., non-archimedean). We also consider a variant of . in which we use the standard Satake compactification of . (resp., the compactification of . due to Werner).
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 09:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通化县| 南丰县| 八宿县| 岳普湖县| 鹰潭市| 荆门市| 扬州市| 连南| 肥乡县| 古浪县| 焦作市| 元朗区| 丰都县| 和静县| 醴陵市| 怀宁县| 万源市| 黄石市| 永平县| 北安市| 玉林市| 宁强县| 井陉县| 望奎县| 固阳县| 大丰市| 高邮市| 虎林市| 扎赉特旗| 绍兴市| 新巴尔虎右旗| 积石山| 兰坪| 巧家县| 龙岩市| 阿城市| 弥渡县| 嘉定区| 剑阁县| 怀远县| 白水县|