找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin

[復(fù)制鏈接]
查看: 54611|回復(fù): 48
樓主
發(fā)表于 2025-3-21 18:19:53 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory
副標(biāo)題In Honour of John H.
編輯David Loeffler,Sarah Livia Zerbes
視頻videohttp://file.papertrans.cn/308/307783/307783.mp4
概述Includes supplementary material:
叢書名稱Springer Proceedings in Mathematics & Statistics
圖書封面Titlebook: Elliptic Curves, Modular Forms and Iwasawa Theory; In Honour of John H. David Loeffler,Sarah Livia Zerbes Conference proceedings 2016 Sprin
描述.Celebrating one of the leading figures in contemporary number theory – John H. Coates – on the occasion of his 70th birthday, this collection of contributions covers a range of topics in number theory, concentrating on the arithmetic of elliptic curves, modular forms, and Galois representations. Several of the contributions in this volume were presented at the conference .Elliptic Curves, Modular Forms and Iwasawa Theory., held in honour of the 70.th .?birthday of John Coates in Cambridge, March 25-27, 2015. The main unifying theme is Iwasawa theory, a field that John Coates himself has done much to create. . .This collection is indispensable reading for researchers in Iwasawa theory, and is interesting and valuable for those in many related fields.?.
出版日期Conference proceedings 2016
關(guān)鍵詞11R23, 11F11, 11F67; Iwasawa Theory; Elliptic Curves; Modular Forms; Number Theory; John Coates
版次1
doihttps://doi.org/10.1007/978-3-319-45032-2
isbn_softcover978-3-319-83192-3
isbn_ebook978-3-319-45032-2Series ISSN 2194-1009 Series E-ISSN 2194-1017
issn_series 2194-1009
copyrightSpringer International Publishing Switzerland 2016
The information of publication is updating

書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory影響因子(影響力)




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory影響因子(影響力)學(xué)科排名




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory網(wǎng)絡(luò)公開(kāi)度




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory被引頻次




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory被引頻次學(xué)科排名




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory年度引用




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory年度引用學(xué)科排名




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory讀者反饋




書目名稱Elliptic Curves, Modular Forms and Iwasawa Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:58:34 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:06:43 | 只看該作者
地板
發(fā)表于 2025-3-22 05:49:29 | 只看該作者
5#
發(fā)表于 2025-3-22 10:46:20 | 只看該作者
6#
發(fā)表于 2025-3-22 16:20:57 | 只看該作者
https://doi.org/10.1007/978-3-642-72302-5 étale cohomology. This connects them to Iwasawa theory and generalizes and strengthens the results for elliptic curves obtained in our former work. In particular, degeneration questions can be treated easily.
7#
發(fā)表于 2025-3-22 18:59:30 | 只看該作者
Partielle Differentialgleichungen,-torsion points on .. We determine all cases when the Galois cohomology group . does not vanish, and investigate the analogous question for . when .. We include an application to the verification of certain cases of the Birch and Swinnerton-Dyer conjecture, and another application to the Grunwald–Wa
8#
發(fā)表于 2025-3-23 01:01:17 | 只看該作者
,Funktionen einer Ver?nderlichen, terms of the .-operator acting on the attached etale .-module .(.). In this chapter we generalize Fontaine’s result to the case of arbitrary Lubin–Tate towers . over finite extensions . of . by using the Kisin–Ren/Fontaine equivalence of categories between Galois representations and .-modules and e
9#
發(fā)表于 2025-3-23 03:01:09 | 只看該作者
https://doi.org/10.1007/978-3-662-28432-2olute Galois group of a number field for which the residual representation . comes from a modular form then so does .. This theorem has numerous hypotheses; a crucial one is that the image of?. must be “big,” a technical condition on subgroups of .. In this paper we investigate this condition in com
10#
發(fā)表于 2025-3-23 08:54:53 | 只看該作者
Metrische und Topologische Fragen,algebra and the “big” Hecke algebra. We prove a control theorem of the ordinary part of the .-MW groups under mild assumptions. We have proven a similar control theorem for the dual completed inductive limit in [.].
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 06:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
石柱| 灌阳县| 温州市| 泸西县| 海安县| 韶关市| 旅游| 荆州市| 惠来县| 西华县| 大关县| 久治县| 曲松县| 巩留县| 杂多县| 洪泽县| 吴旗县| 云林县| 兴仁县| 沅陵县| 二连浩特市| 望奎县| 克拉玛依市| 奇台县| 安顺市| 临沂市| 昌吉市| 沙田区| 松原市| 昌吉市| 辉南县| 石棉县| 浙江省| 翁源县| 惠水县| 禄丰县| 工布江达县| 龙江县| 阿瓦提县| 句容市| 炎陵县|