找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Stability and Bifurcation Theory; Gérard Iooss,Daniel D. Joseph Textbook 1990Latest edition Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: 存貨清單
21#
發(fā)表于 2025-3-25 07:19:29 | 只看該作者
Masaki Yoshio,Ralph J. Brodd,Akiya Kozawaudy of stability and bifurcation to arrange things so that..But we shall not require (II.2). Instead we require that equilibrium solutions of (II.1) satisfy u =., independent of. and. The study of bifurcation of equilibrium solutions of the autonomous problem (II.1)is equivalent to the study of singular points of the curves (II.3) in the (. plane.
22#
發(fā)表于 2025-3-25 08:59:50 | 只看該作者
23#
發(fā)表于 2025-3-25 13:17:33 | 只看該作者
Bifurcation and Stability of Steady Solutions of Evolution Equations in One Dimension,udy of stability and bifurcation to arrange things so that..But we shall not require (II.2). Instead we require that equilibrium solutions of (II.1) satisfy u =., independent of. and. The study of bifurcation of equilibrium solutions of the autonomous problem (II.1)is equivalent to the study of singular points of the curves (II.3) in the (. plane.
24#
發(fā)表于 2025-3-25 16:20:56 | 只看該作者
25#
發(fā)表于 2025-3-25 21:13:36 | 只看該作者
26#
發(fā)表于 2025-3-26 03:27:24 | 只看該作者
https://doi.org/10.1007/978-3-030-16800-1e - ∞ < μ < ∞. The unknown in (I.1) is U(.). (F.,μ, U) is a given nonlinear function or operator. * When F is independent of . we omit . and write F(μ, U). (I.1) governs the evolution of U(.) from its .(0)= U.. An asymptotic solution is a solution to which U(.) evolves after the transient effects as
27#
發(fā)表于 2025-3-26 08:09:13 | 只看該作者
Masaki Yoshio,Ralph J. Brodd,Akiya Kozawaudy of stability and bifurcation to arrange things so that..But we shall not require (II.2). Instead we require that equilibrium solutions of (II.1) satisfy u =., independent of. and. The study of bifurcation of equilibrium solutions of the autonomous problem (II.1)is equivalent to the study of sing
28#
發(fā)表于 2025-3-26 11:19:53 | 只看該作者
29#
發(fā)表于 2025-3-26 15:45:13 | 只看該作者
30#
發(fā)表于 2025-3-26 18:37:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 19:28
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
浮梁县| 靖州| 全南县| 西乌珠穆沁旗| 东兰县| 慈溪市| 磐石市| 台东县| 汉中市| 洛阳市| 杭州市| 岐山县| 虞城县| 绩溪县| 离岛区| 广丰县| 定日县| 江山市| 绥阳县| 饶平县| 托克逊县| 静宁县| 玉林市| 伊宁县| 惠安县| 香格里拉县| 兰州市| 乌拉特中旗| 友谊县| 黄冈市| 射阳县| 高碑店市| 沂水县| 陈巴尔虎旗| 太白县| 巧家县| 化隆| 临漳县| 繁峙县| 新疆| 高阳县|