找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Stability and Bifurcation Theory; Gérard Iooss,Daniel D. Joseph Textbook 1990Latest edition Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: 存貨清單
31#
發(fā)表于 2025-3-26 20:58:33 | 只看該作者
32#
發(fā)表于 2025-3-27 02:01:01 | 只看該作者
33#
發(fā)表于 2025-3-27 07:24:44 | 只看該作者
Commonly Used Regional Exposureeriodic solutions. That is to say, we looked for the conditions under which nonautonomous, .-periodic differential equations give rise to subharmonic solutions when the Floquet exponents at criticality lie in the set of rational points (.. = .,. ≤.1) or, equivalently, when the Floquet multipliers at
34#
發(fā)表于 2025-3-27 10:25:01 | 只看該作者
35#
發(fā)表于 2025-3-27 17:38:23 | 只看該作者
36#
發(fā)表于 2025-3-27 21:08:59 | 只看該作者
Litigating the Rights of the ChildWe turn now to the analysis of steady bifurcating solutions of the two-dimensional autonomous problem (IV.I).
37#
發(fā)表于 2025-3-28 01:36:15 | 只看該作者
https://doi.org/10.1007/978-3-319-01872-0We wish now to make precise the sense in which one-and two-dimensional problems arise out of higher-dimensional problems, partial differential equations, and integro-differential equations by methods of projection.
38#
發(fā)表于 2025-3-28 04:35:22 | 只看該作者
39#
發(fā)表于 2025-3-28 10:06:47 | 只看該作者
40#
發(fā)表于 2025-3-28 11:08:07 | 只看該作者
Methods of Projection for General Problems of Bifurcation into Steady Solutions,We wish now to make precise the sense in which one-and two-dimensional problems arise out of higher-dimensional problems, partial differential equations, and integro-differential equations by methods of projection.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
尼玛县| 安阳市| 铜梁县| 汶上县| 城口县| 满洲里市| 杂多县| 永州市| 石屏县| 前郭尔| 农安县| 咸丰县| 光山县| 余江县| 西乡县| 罗平县| 剑川县| 长岛县| 南皮县| 姜堰市| 新平| 江川县| 牡丹江市| 泽州县| 罗平县| 玉屏| 济源市| 铜川市| 吉林市| 张家港市| 濮阳县| 独山县| 日照市| 四会市| 施甸县| 米脂县| 贵阳市| 北碚区| 石屏县| 荥阳市| 昭通市|