找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Elementary Stability and Bifurcation Theory; Gérard Iooss,Daniel D. Joseph Textbook 1990Latest edition Springer-Verlag Berlin Heidelberg 1

[復(fù)制鏈接]
樓主: 存貨清單
21#
發(fā)表于 2025-3-25 07:19:29 | 只看該作者
Masaki Yoshio,Ralph J. Brodd,Akiya Kozawaudy of stability and bifurcation to arrange things so that..But we shall not require (II.2). Instead we require that equilibrium solutions of (II.1) satisfy u =., independent of. and. The study of bifurcation of equilibrium solutions of the autonomous problem (II.1)is equivalent to the study of singular points of the curves (II.3) in the (. plane.
22#
發(fā)表于 2025-3-25 08:59:50 | 只看該作者
23#
發(fā)表于 2025-3-25 13:17:33 | 只看該作者
Bifurcation and Stability of Steady Solutions of Evolution Equations in One Dimension,udy of stability and bifurcation to arrange things so that..But we shall not require (II.2). Instead we require that equilibrium solutions of (II.1) satisfy u =., independent of. and. The study of bifurcation of equilibrium solutions of the autonomous problem (II.1)is equivalent to the study of singular points of the curves (II.3) in the (. plane.
24#
發(fā)表于 2025-3-25 16:20:56 | 只看該作者
25#
發(fā)表于 2025-3-25 21:13:36 | 只看該作者
26#
發(fā)表于 2025-3-26 03:27:24 | 只看該作者
https://doi.org/10.1007/978-3-030-16800-1e - ∞ < μ < ∞. The unknown in (I.1) is U(.). (F.,μ, U) is a given nonlinear function or operator. * When F is independent of . we omit . and write F(μ, U). (I.1) governs the evolution of U(.) from its .(0)= U.. An asymptotic solution is a solution to which U(.) evolves after the transient effects as
27#
發(fā)表于 2025-3-26 08:09:13 | 只看該作者
Masaki Yoshio,Ralph J. Brodd,Akiya Kozawaudy of stability and bifurcation to arrange things so that..But we shall not require (II.2). Instead we require that equilibrium solutions of (II.1) satisfy u =., independent of. and. The study of bifurcation of equilibrium solutions of the autonomous problem (II.1)is equivalent to the study of sing
28#
發(fā)表于 2025-3-26 11:19:53 | 只看該作者
29#
發(fā)表于 2025-3-26 15:45:13 | 只看該作者
30#
發(fā)表于 2025-3-26 18:37:04 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 21:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
虎林市| 丹江口市| 菏泽市| 两当县| 灌云县| 米脂县| 赣州市| 齐河县| 阳江市| 中西区| 黄骅市| 溧阳市| 灵石县| 雷山县| 五华县| 澜沧| 德州市| 调兵山市| 凤阳县| 娄烦县| 林芝县| 黄山市| 昌黎县| 万州区| 乐亭县| 长沙县| 尼木县| 化德县| 东山县| 渝中区| 龙海市| 乡城县| 铜川市| 定襄县| 玉环县| 登封市| 南昌县| 夏津县| 丰城市| 临海市| 永康市|